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19Normalization of feature vector values is a common practice inmachine learning. Generally, each feature value is
20standardized to the unit hypercube or by normalizing to zero mean and unit variance. Classification decisions
21based on support vector machines (SVMs) or by other methods are sensitive to the specific normalization used
22on the features. In the context of multivariate pattern analysis using neuroimaging data, standardization effec-
23tively up- and down-weights features based on their individual variability. Since the standard approach uses
24the entire data set to guide the normalization, it utilizes the total variability of these features. This total variation
25is inevitably dependent on the amount of marginal separation between groups. Thus, such a normalization may
26attenuate the separability of the data in high dimensional space. In this work we propose an alternate approach
27that uses an estimate of the control-group standard deviation to normalize features before training.We study our
28proposed approach in the context of group classification using structural MRI data. We show that control-based
29normalization leads to better reproducibility of estimatedmultivariate disease patterns and improves the classi-
30fier performance in many cases.
31© 2016 Published by Elsevier Inc.
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41 1. Introduction

42 Machine learning classification algorithms such as the support vec-
43 tor machine (SVM) (Cortes and Vapnik, 1995; Vapnik, 2013) are often
44 used tomap high-dimensional neuroimaging data to a clinical diagnosis
45 or decision. Structural and functional magnetic resonance imaging
46 (MRI) are promising tools for building biomarkers to diagnose, monitor,
47 and treat neurological and psychological illnesses. Mass-univariate
48 methods such as statistical parametric mapping (Frackowiak et al.,
49 1997; Friston et al., 1991, 1994) and voxel- based morphometry
50 (Ashburner and Friston, 2000; Davatzikos et al., 2001) test for marginal
51 disease effects at each voxel, ignoring complex spatial correlations and
52 multivariate relationships among voxels. As a result, methods have
53 emerged for performing multivariate pattern analysis (MVPA) that
54 leverage the information contained in the covariance structure of the
55 images to discriminate between the groups being studied (Craddock
56 et al., 2009; Cuingnet et al., 2011; Davatzikos et al., 2005, 2008, 2009,
57 2011; De Martino et al., 2008; Fan et al., 2007; Klöppel et al., 2008;
58 Koutsouleris et al., 2009; Langs et al., 2011; Mingoia et al., 2012;
59 Mourão-Miranda et al., 2005; Pereira, 2007; Richiardi et al., 2011;

60Sabuncu and Van Leemput, 2011; Vemuri et al., 2008; Venkataraman
61et al., 2012; Wang et al., 2007; Xu et al., 2009; Reiss and Ogden, 2010;
62Gaonkar and Davatzikos, 2013). Identifying multivariate structural and
63functional signatures in the brain that discriminate between groups
64may lead to a better understanding of disease processes and is therefore
65of great interest in the field of neuroimaging research.
66The SVM is a common choice for estimatingmultivariate patterns in
67the brain because it is amenable to high-dimensional, low sample size
68data. Our focus in this work is on patterns in the brain that reflect struc-
69tural changes due to disease. However, the methods apply more gener-
70ally to applications of MVPA using BOLDmeasurements from fMRI data
71or measures of connectivity across the brain. The SVM takes as input
72image-label pairs and returns a decision function that is a weighted
73sum of the imaging features. The estimated weights reflect the joint
74contribution of the imaging features to the predicted class label.
75Machine learning methods in general, and SVMs in particular,
76are sensitive to differences in feature scales. For example, a SVM will
77place more importance on a feature that takes values in the range
78of [1000,2000] than a feature that takes values in the interval [1,2].
79This is because the former tends to have a stronger influence on the
80Euclidean distance between feature vector realizations and therefore
81drives the SVM optimization. To give all voxels or regions of interest
82equal importance during classifier training, it is common practice to im-
83plement feature-wise standardization in someway, either by normalizing
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84 each to have mean zero and unit variance or by scaling to a common
85 domain. For example, (Peng et al., 2016) scale each feature to be in the
86 interval [0,1], and (Hanke et al., 2016; Zacharaki et al., 2009; Etzel et al.,
87 2011; Wang et al., 2012; Sato et al., 2012) normalize to mean zero and
88 unit variance. Such a preprocessing step, while common in practice,
89 tends to be applied without weighing the consequent ramifications in
90 a careful manner. Careful consideration must be given to the choice of
91 feature normalization, as it is directly tied to the relative magnitude of
92 the estimated SVMweights and thus the performance and interpretation
93 of the classifier.While the original idea of feature scaling dates back to the
94 universal approximation theorem from the neural network literature,
95 it has not been explored in detail in the context of neuroimaging and
96 MVPA. This is the object of this manuscript.
97 The rest of this paper is organized as follows: in Section 2, we pro-
98 vide a brief introduction to MVPA using the SVM, review two popular
99 feature normalization methods, and propose an alternative based on
100 the control-group variability. Using simulations, we compare the per-
101 formance of different feature normalization techniques in Section 3,
102 followed by an investigation of the effects of feature normalization on
103 an analysis of data from healthy controls and patients with Alzheimer's
104 disease. We include a discussion in Section 4 and concluding remarks
105 in Section 5.

106 2. Material and methods

107 2.1. Multivariate pattern analysis using the SVM

108 Let (Yi,Xi
T)T, i=1,… ,n, denote n independent and identically dis-

109 tributed observations of the random vector (Y,XT)T, where Y∈{−1,1}
110 denotes the group label, and X∈ℝp denotes a vectorized image with p
111 voxels. A popular MVPA tool used in the neuroimaging community is
112 the SVM (Cortes and Vapnik, 1995; Vapnik, 2013). SVMs are known to
113 work well for high dimension, low sample size data (Schölkopf et al.,
114 2004). Such data are common in the neuroimaging-based diagnostic
115 setting. Henceforth, we focus on MVPA using the SVM.
116 The hard-margin linear SVM solves the constrained optimization
117 problem

arg min
v;b

1
2

vk k2

such that Yi vTXi þ b
� �

≥1 ∀i ¼ 1;…;n;
ð1Þ

119119

where b∈ℝ and v∈ℝp are parameters that describe the classification
120 function. For a given set of training data, let the solution to (1) be denot-

121 ed by ð~v; ~bÞ. Then, for a new observation Xnew with unknown label Ynew,

122 the classification function cðXnewÞ ¼ signð~vTXnew þ ~bÞ returns a predict-
123 ed group label.
124 When the data from the two groups are not linearly separable, the
125 soft-margin linear SVM allows some training observations to be either
126 misclassified or fall in the SVMmargin through the use of slack variables
127 ξi with associated cost parameter C. In this case, the optimization
128 problem becomes

arg min
v;b;ξ

1
2

vk k2 þ C
Xn
i¼1

ξi

such that :

Yi v
TXi þ b

� �
≥1−ξi ∀i ¼ 1;…;n;

ξi ≥0 ∀i ¼ 1;…;n;

ð2Þ
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where C∈ℝ is a tuning parameter that penalizes misclassification,
131 and ξ=(ξ1,ξ2,… ,ξn)T is the vector of slack variables. For details about
132 solving optimization problems (1) and (2) we refer the reader to
133 (Hastie et al., 2001).

134In high-dimensional problems where the number of features is
135greater than the number of observations, the data are almost always
136separable by a linear hyperplane (Orrù et al., 2012). However, when
137applying MVPA to region of interest (ROI) data such as volumes of
138subregions in the brain, the data may not be linearly separable. In this
139case, the choice of C is critical to classifier performance and generaliz-
140ability. Examples of MVPA using the SVM include classification ofmulti-
141ple sclerosis patients into disease subgroups (Bendfeldt et al., 2012), the
142study of Alzheimer's disease (Cuingnet et al., 2011; Davatzikos et al.,
1432011), and various classification tasks involving patients with depres-
144sion (Costafreda et al., 2009; Gong et al., 2011; Liu et al., 2012). This is
145only a small subset of the relavant literature, which demonstrates the
146widespread popularity of the approach.

1472.2. SVM Feature normalization for MVPA

148The choice of feature normalization affects the estimated weight
149pattern of a SVM and can lead to vastly different conclusions about the
150underlying disease process. Two widely implemented approaches are
151to (i) normalize each feature to have mean zero and unit variance, and
152(ii) scale each feature to have a common domain such as [0,1]. Hence-
153forth, we will refer to (i) as standard normalization and (ii) as domain
154standardization (Pedregosa et al., 2011).
155Let μj and σj denote the mean and standard deviation of the jth

156feature, j=1, … ,p. Denote the corresponding empirical estimates

157by X j ¼ n−1∑n
i¼1Xi; j and σ̂ j ¼ fðn−1Þ−1∑n

i¼1ðXi; j−X jÞ2g1=2 . Then,
158subject i's standard-normalized jth feature is calculated as

XZ
i; j ¼

Xi; j−X j

σ j
:

160160

Alternatively, subject i's domain-scaled jth feature is calculated as

XU
i; j ¼

Xi; j−mini Xi; j

mini Xi; j−mini Xi; j
:

162162

One potential drawback of using domain scaling is the instability of
163theminimum andmaximum order statistics, especially in small sample
164sizes. This may introduce bias in the estimated weight pattern by up-
165and down-weighting features in an unstable way. In comparison, the
166standard normalization may seem relatively stable. However, it implic-
167itly depends on the relative sample size of each group and the separabil-
168ity between groups. To see this, let fXj

denote the marginal distribution
169of Xj, with mean μj and variance σj

2. Let fXj | Y=y denote the conditional
170distribution of Xj given Y=y with mean μj ,y and variance σj ,y

2 . In addi-
171tion, let γ= pr(Y=1). Then, μj=γμj ,1+(1−γ)μj , −1 and

σ2
j ¼ E X j−μ j

� �2
¼ EX2

j−μ2
j

¼ ∫x2j γ f X j Y¼1j xð Þ þ 1−γð Þ f X j Y¼−1j xð Þ
n o

dx−μ2
j

¼ γ σ2
j;1 þ μ2

j;1

� �
þ 1−γð Þ σ2

j;−1 þ μ2
j;−1

� �
−μ2

j :

173173

After simplification, the previous expression can be written as

σ2
j ¼ γσ2

j;1 þ 1−γð Þσ2
j;−1 þ γ 1−γð Þ μ j;1−μ j;−1

� �2
: ð3Þ

175175

The right-hand side of expression (3) shows that the variance of
176feature j depends on amixture of the conditional variances of both clas-
177ses and a term that depends on the squared Euclidean distance between
178their marginal means. Larger marginal separability of feature jwill lead
179to a larger estimate of the pooled standard deviation used for normali-
180zation. Thus, normalizing by the pooled standard deviation can in
181some cases harshly penalize, or down-weight, features that have good
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