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Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable
across sites and between subjects. Intensity normalization is a first step for the improvement of comparability
of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging
site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large
multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression),
a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV
[Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used
in genomics, we decompose the voxel intensities of images registered to a template into a biological component
and an unwanted variation component. The unwanted variation component is estimated from a control region
obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status
and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate
factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of
the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using
T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive
impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White
Stripe.We show that RAVEL performs best at improving the replicability of the brain regions that are empirically
found to bemost associatedwith AD, and that these regions are significantlymore present in structures impacted
by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition,
we show that the RAVEL-corrected intensities have the best performance in distinguishing betweenMCI subjects
and healthy subjects using the mean hippocampal intensity (AUC = 67%), a marked improvement compared
to results from intensity normalization alone (AUC = 63% and 59% for histogram matching and White Stripe,
respectively). RAVEL is promising for many other imaging modalities.
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Introduction

In recent years, there has been an increase in the number of multi-
site neuroimaging studies, including the Human Connectome Project
(HCP), the Alzheimer's Disease Neuroimaging Initiative (ADNI), and
the Australian Imaging, Biomarkers and Lifestyle Flagship Study of
Aging (AIBL). In structural magnetic resonance imaging (MRI) studies,

larger samples of subjects yield more power to detect structural varia-
tions in different subgroups, for example, changes in the hippocampal
volume associated with Alzheimer's disease (AD) and mild cognitive
impairment (MCI). However, because MRI intensities are acquired in
arbitrary units, it has often been found that the differences inMRI inten-
sities between scanning parameters and studies are larger than the bio-
logical differences observed in these images. For instance, (Shinohara
et al. (2014) shows that in the ADNI andAIBL studies,which have highly
standardized protocols, striking differences in the raw intensities are
observed between imaging sites.

Since the raw image intensities are non-comparable across sites
and between subjects, intensity normalization is paramount before
performing between-subject intensity comparisons at the voxel level.
While intensity normalization is not as important in other applications
such as morphometry and brain volumetrics (Ashburner and Friston,
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2000; Jovicich et al., 2013), it is essential for analyzing change in inten-
sitieswithin anMRI volumeover time (Ghassemi et al., 2015a; Sweeney
et al., 2016), developing intensity-based biomarkers (Chong and Lim,
2009; Meier et al., 2007; Vardhan et al., 2014) and for regression analy-
ses at the voxel level (Hartung et al., 2014; Smith et al., 2004). The
challenge of intensity normalization has been largely addressed in the
literature (Jager et al., 2006; Leung et al., 2010; Madabhushi et al.,
2006; Nyúl and Udupa, 1999; Nyúl et al., 2000; Shinohara et al., 2011;
Shinohara et al., 2014; Weisenfeld and Warfield, 2004), with several
methods reviewed in (Shah et al., 2011). Recently, a novel intensity
normalization method, called White Stripe (Shinohara et al., 2014),
was developed to bring raw image intensities to a biologically interpret-
able intensity scale. The method applies a z-score transformation to the
whole brain using parameters estimated from a latent subdistribution
of normal-appearing white matter (NAWM). The use of NAWM for
normalization makes the method suitable for many studies of brain
abnormalities, as in the case of multiple sclerosis (MS) lesions. While
themethod has been shown tomake the white matter (WM) compara-
ble across subjects, it was noted that residual across-subject variability
was still present in the grey matter (GM).

In this work, we investigate between-scan technical variability that
is left uncorrected by intensity normalization.We show thatwhile com-
mon intensity normalization methods successfully correct for global
intensity shifts associated with scanner site, substantial between-scan
technical variation remains. This technical variation can be due to scan-
ning parameters, scanner manufacturers, scanner field strength, and
other factors. We refer to any post-normalization inter-scan variation
that is not biological in nature as a “scan effect.”

To correct for scan effects, we propose Removal of Artificial Voxel
Effect by Linear regression (RAVEL). RAVEL is a tool for removing
unwanted variation present after intensity normalization. RAVEL is
inspired by the batch effect correction tools SVA (Leek and Storey,
2007; Leek and Storey, 2008) and RUV (Gagnon-Bartsch and Speed,
2012) used broadly in genomics. In the analysis of gene expression
and other genomic data, residual noise after intensity normalization is
referred to as batch effects, because experiments are often performed
in batches run on different dates. If not accounted for, batch effects
have been shown to lead to spurious associations (Leek et al., 2010).
Tomake a parallel with brain-imaging studies, batch effects are compa-
rable to scan effects, where a single scan plays the role of a batch.

We use the linear model introduced in (Leek and Storey, 2007) to
decompose the variation of the normalized intensities into a biological
component of interest (variation associated with clinical covariates)
and an unknown, unwanted variation component to be estimated
from the data. The unwanted variation component encapsulates both
technical variation and biological variation that is not of interest in the
study. We register the different scans to a common template to allow
the use of voxel-wise linear models, and estimate the unwanted varia-
tion component from regions of the brain that are not expected to be
associatedwith the clinical covariates of interest. This follows themeth-
odology of the RUV batch effect correction tool (Gagnon-Bartsch and
Speed, 2012) which was later discussed in Leek (2014) for RNA
sequencing. Unlike intensity-normalization methods, RAVEL utilizes
all images in the study to leverage information about unwanted vari-
ability. Here, we use voxels that are consistently labelled as cerebrospi-
nal fluid (CSF) across subjects as a control region; these voxels are not
expected to be associated with disease (Luoma et al., 1993).

We evaluate the performance of RAVEL using a large subset of the
ADNI database consisting of more than 900 subjects. We demonstrate
our method by using the T1-weighted (T1-w) images from subjects
with AD and MCI, as well as healthy controls. We follow the work of
Fortin et al. (2014) to benchmark RAVEL against two intensity normal-
ization procedures without any scan effect correction: the popular
histogrammatching algorithm and White Stripe. We focus on showing
that RAVEL improves the replicability of the biological findings. Critical-
ly, we show that a reduction of technical variation does not result in

removing biological variability. Namely, making intensity densities
more similar does not necessarily improve sensitivity to biological
changes; on the contrary, overmatching of distributions can result in
the removal of biologically relevant signal. To show improvement in
terms of biological findings, we first demonstrate that the top voxels
associated with AD in the RAVEL-corrected dataset are more replicable
across independent subsets of subjects. We measure the replicability
of the results by randomly splitting the ADNI dataset into discovery
and validation cohorts multiple times. Then, we show that the top
voxels associated with AD after RAVEL correction are more enriched
for brain regions known to undergo structural changes in AD. Finally,
we show that the average hippocampal intensity after RAVEL correction
performs better than intensity-normalized-only images in discriminat-
ing betweenADpatients and healthy controls, and betweenMCI patients
and healthy controls. This shows that RAVEL-corrected T1-w intensities
aremore biologicallymeaningful than intensity-normalized-only images
for group comparisons, and also potentially promising for the develop-
ment of biomarkers.

Materials and methods

Study population

Ourdataset consists of a subset of 917 subjects downloaded from the
ADNI database (adni.loni.usc.edu). For each subject, we selected a study
visit at random.We obtained 506, 184, and 227 subjects from the ADNI,
ADNI-2, and ADNI-GO phases, respectively.We present summary statis-
tics of the study population in Table 1. The selected scans were acquired
at 83 different imaging sites, with a median number of 10 patients per
site. The scans are also well-balanced for disease status across sites.
The different scanning parameters are presented in Table A.1.

Imaging sequences and preprocessing

We considered T1-w imaging acquired on T1.5 and T3 scanners
according to the ADNI standardized protocol (Jack et al., 2008). The
analysis was performed in R (R Core Team, 2014), using the packages
oro.nifti (Whitcher et al., 2011), fslr (Muschelli et al., 2015), ANTsR
(Avants et al., 2015), andWhiteStripe (Shinohara andMuschelli, 2015).

We applied the N4 inhomogeneity correction algorithm (Tustison
et al., 2010) to each image. We nonlinearly registered all T1-w images
to a high-resolution T1-w image atlas (Oishi et al., 2009), using the sym-
metric diffeomorphic image registration algorithm (Avants et al., 2008)
implemented in the ANTs suite. We used non-linear registration in
order to define a brain control region aligned across subjects and to
find spatially coherent nuisance patterns for removal. Compared to
the population-level atlases, the advantage of using a single-subject
atlas is that it contains sharp definitions of anatomical structures,
many of which are highly variable across individuals and cannot be
easily delineated in population atlases. We emphasize that all of the
techniques proposed here can be applied directly to data in either
multi- or single-subject template spaces. To remove extra-cerebral
tissue from each scan, we first created a brain mask on the template
using the skull-stripping algorithm FSL BET (Smith, 2002) using the
fslr package and subsequently applied this resulting brain mask to
all N4-corrected and registered images. The preprocessing pipeline is
summarized at the top of Fig. 1.

In addition to the template brain segmentation, we performed a
3-class tissue segmentation by running the FSL FAST segmentation
algorithm (Zhang et al., 2001) on the N4-corrected, registered, and
skull-stripped images, for each subject separately.

RAVEL methodology

The RAVEL correction procedure adapts the linearmodel introduced
in SVA (Leek and Storey, 2007; Leek and Storey, 2008) to intensity-
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