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19Repeatedmeasurements andmultimodal data are common in neuroimaging research. Despite this, conventional
20approaches to group level analysis ignore these repeated measurements in favour of multiple between-subject
21models using contrasts of interest. This approach has a number of drawbacks as certain designs and comparisons
22of interest are either not possible or complex to implement. Unfortunately, even when attempting to analyse
23group level data within a repeated-measures framework, the methods implemented in popular software pack-
24ages make potentially unrealistic assumptions about the covariance structure across the brain. In this paper,
25we describe how this issue can be addressed in a simple and efficient manner using the multivariate form of
26the familiar general linearmodel (GLM), as implemented in a newMATLAB toolbox. Thismultivariate framework
27is discussed, paying particular attention to methods of inference by permutation. Comparisons with existing
28approaches and software packages for dependent group-level neuroimagingdata aremade.Wealsodemonstrate
29how this method is easily adapted for dependency at the group level when multiple modalities of imaging are
30collected from the same individuals. Follow-up of these multimodal models using linear discriminant functions
31(LDA) is also discussed, with applications to future studies wishing to integrate multiple scanning techniques
32into investigating populations of interest.
33© 2016 Published by Elsevier Inc.
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44 1. Introduction

45 Group-level repeated measurements are commonplace in neuroim-
46 aging research, fromneurocognitive paradigmswithmultiple activation
47 conditions to longitudinal intervention studies. Despite this, conven-
48 tional summary statistic approaches to modelling these data ignore
49 the repeated measurements in favour of the construction of contrasts
50 at the subject level. These contrasts are then explored using multiple
51 group-level linear models. Though this approach is advantageous due
52 to its simplicity, when the design contains more than two repeated
53 measurements many of the typical ANOVA tests used to investigate
54 the repeated measures and their interactions are either overly complex
55 to implement or simply not possible. Furthermore, for approaches
56 such as the p-block method of analysing pharmacological challenge
57 fMRI data (phMRI; e.g. McKie et al., 2011), the use of contrasts at the
58 individual-level is not a useful method and repeated-measurement
59 models become a necessity. Despite this, the approaches currently
60 implemented in two of the most popular fMRI analysis packages, FSL
61 (http://fsl.fmrib.ox.ac.uk/fsl/) and SPM (http://www.fil.ion.ucl.ac.uk/

62spm/), are not able to easily account for dependent group-level neuro-
63imaging data. FSL FEAT must assume sphericity at every voxel so that
64F-tests follow an exact F-distribution (Huynh and Feldt, 1970). Cases
65where the sphericity condition is not met can lead to a poorer control
66of the type I error rate due to overly liberal F-statistics (Box, 1954;
67Kogan, 1948). SPM, on the other hand, has a method for correcting
68departures from sphericity (Glaser and Friston, 2007). However, the
69estimated structure used in this correction is assumed to be the same
70for every voxel. In both cases, these assumptions may not always be
71valid for complex dependent data.
72Further to the issues of dependent group-level analyses, it is also
73commonplace to collect multiple imaging sequences from the same
74subjects during the same scanning session (e.g. functional, T1 structural,
75arterial spin labelling). In some cases, there may even be different
76modalities of imaging collected from the same individuals (e.g. MR
77and PET). Analysing these different sequences/modalities is similar to
78repeated-measures designs due to the assumed correlation between
79measurements taken from the same individual. The biggest difference
80with repeated-measurement models is simply that the data are not
81guaranteed to be commensurate as they are generally not measured
82on the same scale. Although questions of interest often focus on the
83sequences and modalities individually, pooling the information provid-
84ed by different imaging techniques may be advantageous in exploring
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85 how a combination of measurements may provide information on
86 group differences above and beyond the information they provide indi-
87 vidually. To achieve this, methods that accommodate both the assumed
88 correlation and the differing scales of the measurements are needed.
89 In this paper, we will demonstrate how both the issues of repeated-
90 measures and multimodal1 group models can be addressed using
91 the multivariate form of the familiar univariate general linear model
92 (GLM). We introduce a MATLAB toolbox for fitting these models called
93 Multivariate and Repeated Measures (MRM), comparing results from
94 real neuroimaging datasets between this approach and other imple-
95 mentations of repeated-measures modelling of neuroimaging data.
96 We also highlight the ability of this approach to integratingmultimodal
97 group-level imaging datasets. In addition, we discuss facilities in the
98 MRM software to perform descriptive linear discriminant analysis
99 (dLDA) to investigate how information from different modalities and
100 sequences can be combined to maximally separate groups of interest.
101 We also discuss the use of permutation-based approaches to p-value
102 calculation, and multiple comparison corrections at both the voxel and
103 cluster level, highlighting the utility of these methods when applied to
104 the multivariate GLM.

105 2. Theory

106 The theory behind the multivariate extension of the univariate
107 GLM is well documented (Christensen, 2001; Davis, 2002; Rencher
108 and Christensen, 2012), and has recently been advocated for use in neu-
109 roimaging by Chen et al. (2014). Here we present a brief overview for
110 completeness, emphasising how this approach is naturally adapted for
111 repeated-measures/longitudinal models as well as multimodal integra-
112 tion. We also present the theory behind dLDA as an extension of the
113 multivariate framework for understanding the contribution of multi-
114 modal imaging data to the separation of groups of interest.

115 2.1. The multivariate GLM

116 The multivariate form of the univariate GLM is expressed as

Y ¼ XBþ E ð1Þ
118118

where Y is an n× t matrix of observations, X is the n×k design ma-
119 trix, B is the k× t matrix of model parameters, and E is the n× t matrix
120 of errors. This can be written in matrix form as
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122122 where n can be taken as the number of subjects, t as the number of
dependent variables, here referred to as the repeated measurements or

123 modalities, and k as the number of independent variables, here referred
124 to as the predictors. Traditionally, it is assumed that Y i � N ðX iB;ΣÞ
125 so that each ith rowofY is considereddrawn fromamultivariate normal
126 distribution with a mean vector given by XiB, and an unstructured
127 covariance matrix Σ. As with the univariate case, these assumptions
128 can more usefully be expressed using the errors so that

Vec Eð Þ � N 0; In ⊗Σð Þ ð3Þ

130130where the Vec operator is used to re-express a matrix as a vector
by stacking the transposed rows (Christensen, 2011; Rencher and

131Christensen, 2012). Here 0 is a vector of zeros, In is the n×n identity
132matrix, and ⊗ denotes the Kronecker product.
133Estimation of B is usually performed using ordinary least squares,

B̂ ¼ X 0X
� ��1X0Y ð4Þ

135135identical to performing t univariate estimates using the columns of Y.
Here, the most salient difference with univariate approaches is evident

136as we no longer have a vector of estimated parameters but a matrix,
137with one column for each of the t dependent variables and one row
138for each of the k predictors inX. Calculation of themultivariate residuals

139follows using Ê ¼ Y � XB̂ so that an unbiased estimate ofΣ can bemade
140using

Σ̂ ¼ 1
n� k

Ê0Ê ð5Þ

142142

(Davis, 2002; Rencher and Christensen, 2012). Here we see that
143the covariance structure of the model is both unconstrained and very

144simple to estimate. When applied to imaging data the residual matrix Ê
145is estimated on a per-voxel basis and thus it is trivial to estimate a
146unique covariance structure for every voxel. This is a distinct advantage
147of mass multivariate approaches to dependent neuroimaging data.
148However, it should be clear from Eq. (3) that in this framework the
149covariance structure is assumed identical across groups.We shall return
150to this issue later.
151The multivariate framework allows for the modelling of both
152repeated-measures and multimodal group-level imaging data. In both
153instances, each row of Y representsmeasurements from a single subject
154(for a particular voxel), with the columns of Y representing themultiple
155observations for that subject. Whether modelling repeated measure-
156ments or multiple modalities, there is an assumed degree of correlation
157between the columns of Y. This correlation is expressed using the esti-

158mated variance–covariance matrix Σ̂, as indicated above. The utility of
159mixed-effects approaches for dependent data is in part due to their flex-
160ibility in specifying a variety of covariance structures (Mcculloch et al.,
1612008; Searle et al., 1992), whereas the assumption of a spherical covari-
162ance structure is one of the main reasons the traditional repeated-
163measures ANOVA approach is typically avoided (Davis, 2002). In the
164multivariate approach, an unconstrained covariance structure at every
165voxel provides the opportunity for inference without making any as-
166sumptions on the form that the covariance may take across the brain.
167As such, we argue that this is the safest approachwithout the computa-
168tional burden of estimating variance components using iterative
169maximum-likelihood at every voxel (Guillaume et al., 2014). Notably,
170such a structure can also be fit uniquely at each voxel using marginal
171models, where the covariance structure is treated as a nuisance factor,
172allowing simplification of the mixed-effects scheme where both fixed
173and random effects must be specified directly (Guillaume et al., 2014;
174Li et al., 2013; Skup et al., 2012).
175Extension of the multivariate GLM to accommodate continuous
176covariates is identical to the univariate domain and simply involves
177adding the, usually mean-centred (Poldrack et al., 2011), covariate wi

178as another column in the design matrix X. The parameters associated
179with wi are therefore slopes of the relationship between wi and Y
180for each column of Y. If a grouping variable is used to split the covariate
181then a per-condition, or per-modality, slope is estimated for each group
182separately. Comparisons of changes in slope across groups are then
183easily specified. This scheme is more straightforward than integrating
184continuous covariates into traditional univariate approaches to repeated
185measurements, although it does not allow for the specification of time-
186varying covariates. With no groups and only continuous covariates the

1 We use the term multimodal generically to cover both multiple sequences from the
same imaging modality (e.g. fMRI, ASL, DTI) as well as the different imaging modalities
themselves (e.g. MR, PET).
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