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18The blood oxygen level dependent (BOLD) signal, as measured using functional magnetic resonance imaging
19(fMRI), is widely used as a proxy for changes in neural activity in the brain. Physiological variables such as
20heart rate (HR) and respiratory variation (RV) affect the BOLD signal in away thatmay interferewith the estima-
21tion and detection of true task-related neural activity. This interference is of particular concern when these
22variables themselves show task-relatedmodulations. We first establish that a simplemovement task reliably in-
23duces a change in HR but not RV. In group data, the effect of HR on the BOLD responsewas larger andmore wide-
24spread throughout the brain than were the effects of RV or phase regressors. The inclusion of HR regressors, but
25not RV or phase regressors, had a small but reliable effect on the estimated hemodynamic response function
26(HRF) inM1 and the cerebellum.We next askedwhether the inclusion of a nested set of physiological regressors
27combining phase, RV, and HR significantly improved themodel fit in individual participants' data sets. There was
28a significant improvement from HR correction inM1 for the greatest number of participants, followed by RV and
29phase correction. These improvementsweremoremodest in the cerebellum. These results indicate that account-
30ing for task-relatedmodulation of physiological variables can improve thedetection and estimation of true neural
31effects of interest.
32© 2016 Published by Elsevier Inc.
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43 Introduction

44 Functional magnetic resonance imaging (fMRI) is widely used to
45 examine responses of the human brain to a variety of tasks and stimuli.
46 One disadvantage of the method is that it only provides an indirect
47 measurement of neural activity by measuring changes in the blood
48 oxygenation level dependent (or BOLD) signal (Ogawa and Lee, 1990).
49 These changes occur on a much slower time scale than changes in the
50 activity of local neural populations (Logothetis, 2003). A complex rela-
51 tionship exists between neural activity and the changes in blood flow,
52 volume, and oxygenation that form the basis of the BOLD signal
53 (Buxton and Frank, 1997; for review, see LogothetisQ5 & Wandell, 2004).
54 Fortunately, the BOLD response is essentially linear and time-invariant
55 (BoyntonQ6 et al., 1996; Dale and Buckner, 1997; Friston et al., 1994);
56 therefore, the brain response tomanyevents can be efficiently extracted
57 with events separated by only a few seconds (Dale, 1999).
58 In order to determine whether a particular brain area is active in
59 such a task, researchers typically adopt a regression approach, using a

60general linearmodel (GLM) and regression analysis to identify brain re-
61gions in which the BOLD response matches a set of predictions (Friston
62et al., 1995; see Poline and Brett, 2012 for a broad evaluation of the costs
63and benefits of this approach). Since the coupling between the neural
64and BOLD responses has a similar shape across a wide variety of condi-
65tions, a canonical hemodynamic response function (HRF) is frequently
66employed in fMRI analyses (Friston et al., 1998). While this approach
67can greatly simplify fMRI analysis, it does come at a cost, given that
68the HRF has been shown to differ across individuals, brain regions, and
69events (Handwerker et al., 2004). Generating a predicted brain response
70using the canonical HRF can therefore result in a poorer fit in compari-
71son to individualized, region-specific, or task-specific HRFs, potentially
72leading to a mischaracterization of brain activity (Hernandez et al.,
732002; Handwerker et al., 2004).
74The fit of any GLM can be diminished by failing to account for factors
75that are correlated with each other, a problem that is especially
76pronounced in event-related studies of BOLD signal that are more
77susceptible to noise. Two important, measurable, and often ignored
78physiological covariates are heartbeats and respiration (Glover et al.,
792000). The beating of the heart causes pulsations in blood vessels and
80cerebrospinal fluid (CSF), creating artifacts near large blood vessels,
81around ventricles, and even in deep sulci (Dagli et al., 1999). Additional
82artifacts are introduced by respiration, as the rise and fall of the chest
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83 cavity during breathing causes both head motion and magnetic field
84 disturbances (Glover et al., 2000; Raj et al., 2001). It is therefore desir-
85 able to measure heartbeats and breathing to account for their influence
86 on the BOLD signal. The RETROICOR method developed by Glover et al.
87 (2000) provides one such approach, charting the phase of cardiac and
88 respiration processes relative to image acquisition. Variance attribut-
89 able to the phase of these processes may be removed in preprocessing
90 or accounted for by including nuisance regressors in a GLM.
91 One limitation of the RETROICOR correction is that it does not take
92 into account how changes in the rate of physiological processes affect
93 the BOLD signal. Changes in heart rate (HR), as well as respiration vari-
94 ance (RV, ameasurewhich accounts for changes in amplitude and rate),
95 can cause fluctuations in the BOLD signal (Birn et al., 2006, 2008;
96 Shmueli et al., 2007; Chang et al., 2009; Chang andGlover, 2009). Taking
97 these factors into account during resting state scans has been shown to
98 alter the spatial spread of connectivity maps (van Buuren et al., 2009;
99 and for review, see Birn, 2012). While resting state studies often
100 measure correlations associated with the “default mode network”
101 (Raichle et al., 2001; Greicius et al., 2003), one study found that these
102 correlations were in fact robust to correction for physiological noise,
103 but activations in a task-positive network were reduced (van Buuren
104 et al., 2009).
105 Importantly, changes in HR and RV are frequently task-related,
106 associated with variations in arousal (Tursky et al., 1969), movement
107 preparation (Damen and Brunia, 1987), response inhibition (for review
108 see Jennings and van der Molen, 2002), feedback processing (Crone
109 et al., 2003, 2005), cognitive interference and planning (van ‘t Ent
110 et al., 2014), and pharmacological state (Khalili-Mahani et al., 2013). In-
111 deed, changes in HR, RV, and other autonomic indicants, such as skin
112 conductance and pupil dilation, are common dependent variables in
113 the study of a range of cognitive processes and their associated brain
114 responses (for review, see Critchley, 2009). Furthermore, autonomic
115 variables are themselves regulated by efferent signals from the brain,
116 making the direction of influence between brain and body difficult to
117 discern (see Iacovella and Hasson, 2011).
118 We previously demonstrated the importance of considering task-
119 related changes in physiological processes in a study designed to
120 identify brain regions responsive to movement errors (Schlerf et al.,
121 2012). When physiological regressors were not included in the GLM
122 analysis, reaching errors led to a broadly distributed decrease in the
123 BOLD response in the cerebellum. However, therewas also a reliable re-
124 duction in HR following movement errors. When the model included
125 HR, the cerebellar deactivations were no longer evident. Instead, an in-
126 crease in the BOLD signal was observed on error trials, restricted to the
127 arm area of the anterior cerebellum. Thus, the expected error signal in
128 the cerebellum was only evident after task-dependent changes in HR
129 were included in the model of the BOLD response. Nevertheless, to
130 our knowledge, no other study has investigated the impact of physio-
131 logical noise correction on task responses in the cerebellum.
132 In the current study, we systematically investigated the potential
133 consequences of task-related fluctuations in HR and RV on the HRF, as
134 well on the model fit of the BOLD response, using a progressive series
135 of analyses. Rather than focusing onmovement errors, we examined re-
136 sponses to a simpler behavior: arm movements produced in the ab-
137 sence of visual feedback. We chose to measure responses to this
138 simple type of event for two reasons: First, it allowed us to situate the
139 error-specific changes observed by Schlerf et al. (2012) in themore gen-
140 eral context of movement-related changes. Second, the use of a simple
141 motor behavior decreases the likelihood that neural activity related to
142 cognitive processing (e.g., error processing) is driving the physiological
143 changes. As such, this would increase our confidence that the impact of
144 HR and RV on the BOLD signal do not reflect the efferent regulation of
145 autonomic processes (e.g., Kobayashi et al., 2007; Iacovella and
146 Hasson, 2011).
147 We first demonstrated that HR is consistently affected by armmove-
148 ment. In contrast, changes in RV are more variable. We then examined

149the effect of these variables on the BOLD signal throughout the brain.
150We next asked how the inclusion of physiological regressors in the
151GLM influenced the shape of the estimated arm movement-related
152HRF in twomotor regions: primary motor cortex (M1) and the cerebel-
153lum. Finally, we quantified the added explanatory power of different
154sets of physiological regressors, either in isolation or in combination.

155Material and methods

156Participants

157Eleven healthy, right-handed participants were tested (7 female,
158mean age 24.1 years). The participants provided written, informed con-
159sent under a protocol approved by the University of California, Berkeley
160Institutional Review Board.

161Task

162Prior to scanning, participants were fitted with a custom bite bar.
163During the scanning session, the bite bar was mounted to the head
164coil to minimize head movement. Stimuli were backprojected onto a
165screen mounted inside the bore of the magnet and viewed via a mirror
166mounted to the head coil. Froma supine position, the participants held a
167robotic manipulandum (http://www.fmrirobot.org) in their right hand.
168Themanipulandumwas positioned over the participant's abdomen and
169could be freely moved in a plane parallel to the scanner bed.
170Participants were trained to make short (8 cm) out-and-back
171reaching movements along the axis of the body toward their head,
172chiefly by flexion about the elbow. They were instructed to terminate
173each return movement such that in between trials, the hand rested
174comfortably near the navel. Participants were instructed to move
175when a central fixation crosshair changed color from red to green. For
176all runs, the green crosshair was presented for 500 ms, regardless of
177inter-trial interval. Participants were told to initiate the movement as
178soon as they saw the color change. To minimize corrective movements
179and processing load, there was no visual feedback of hand position dur-
180ing scanning. At the termination of each return movement (when the
181hand coordinates were no more than 1 cm apart for a minimum of
182500 ms), the start position of the hand for the next trial was automati-
183cally adjusted to the center of fixation.
184All participants completed a training session in a mock scanner 1–
1857 days prior to the scanning session. This session served to familiarize
186the participants with the bite bar, manipulandum, and scanning envi-
187ronment, and to train them in the movement task. The training session
188consisted of four runs and was designed to train participants to make
189movements in the scanner of approximately uniform amplitude with-
190out relying on feedback. The training runs provided feedback that be-
191came progressively less informative as the training continued. In the
192first run, the participants received online feedback of the cursor position
193and feedback about reach amplitude at the end of each movement.
194Reach amplitude feedback was given in numeric form, shown above
195the fixation crosshair as a percentage of the desired 8 cm amplitude
196for 500 ms immediately following completion of the return movement
197(Fig. 1A). For the next run, they were only given reach amplitude feed-
198back (no online cursor feedback), and for thefinal two runs, no feedback
199was provided, as in the actual scan session (Fig. 1B). At various points in
200the training session, the experimenter provided verbal coaching
201concerning movement initiation, speed, and amplitude.
202The scanning session consisted of an anatomical scan and three func-
203tional scans: one localizer run and two task runs. The localizer run lasted
2046 min and 40 s and consisted of 12 12-second blocks, with rest periods
205lasting 21.3 s in between each block (Fig. 1C). There were two types of
206blocks: reach and auditory (6 of each block type). Reach blocks were in-
207dicated by the appearance of the word “Reach” on the screen. Partici-
208pants then produced eight out-and-back movements, initiating each
209movement when they saw the fixation crosshair turn green. Over each
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