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The brain is capable of producing coordinated fast changing neural dynamics across multiple brain regions in
order to adapt to rapidly changing environments. However, it is non-trivial to identify multiregion dynamics at
fast sub-second time-scales in electrophysiological data. We propose a method that, with no knowledge of any
task timings, can simultaneously identify and describe fast transientmultiregion dynamics in terms of their tem-
poral, spectral and spatial properties. The approachmodels brain activity using a discrete set of sequential states,
with each state distinguished by its ownmultiregion spectral properties. This can identify potentially very short-
lived visits to a brain state, at the same time as inferring the state's properties, by pooling over many repeated
visits to that state. We show how this can be used to compute state-specific measures such as power spectra
and coherence. We demonstrate that this can be used to identify short-lived transient brain states with distinct
power and functional connectivity (e.g., coherence) properties in an MEG data set collected during a volitional
motor task.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

The brain is able to coordinate neural oscillations across multiple
brain areas in both rest and task (Buzsaki and Draguhn, 2004),
(Mantini et al., 2007), (Fries, 2005), (Schnitzler and Gross, 2005). How-
ever, the manner in which these neural interactions arise in the brain is
not fully understood. Typically, in electrophysiological data these oscil-
latory interactions are characterised using their multiregion spectral
properties, e.g., the power content or the extent of phase locking (e.g.,
coherence) over different cortical regions (Lachaux et al., 1999). How-
ever, since the brain must be able to rapidly reorganise neural oscilla-
tions in response to the environment, there is a need to be able to
identify how thesemultiregion spectral properties vary over time at po-
tentially very fast (sub-second) time-scales.

Many existing methods for investigating time-varying patterns of
spectral properties or functional connectivity use sliding time windows
(Wendling et al., 2009), (Allen et al., 2014). Slidingwindow approaches
pre-specify the temporal resolution of the changing patterns, and make
inefficient use of the data when the same patterns occur recurrently at

other points of time. The exception to this is when data can be pooled
over epochs of a repeated task; however, this necessitates an assump-
tion of stationarity over trials. These approaches also require a choice
of the width of the time-window. Short windows can lead to noisy esti-
mations, whereas long ones can miss the quickest changes.

In this paper, we provide a unified framework for characterising
oscillatory dynamics in termsof their time-varying spatial andmultiregion
spectral properties without the knowledge of any task timings. The
primary contribution of the method is that it operates simultaneously on
the frequency, time and space dimensions, thus allowing for a unique de-
scription of transient spectral properties including power spectra and con-
nectivity measures such as coherence. Importantly, it can identify when
multiregion spectral patterns repeat at different points in time, and
thereby pool over them to provide a better estimation of those patterns.

Although it is broadly applicable to any electrophysiological data
modality, we focus here onmagnetoencephalography (MEG), of partic-
ular interest for research on human connectivity for its fine-grain tem-
poral resolution, wide-brain coverage and non-invasive nature. To this
end, we also devise a way to deal with the sign ambiguity inherent to
source reconstruction in MEG, which can jeopardise multisession/sub-
ject analyses if left unaddressed.

The method combines two well-known models: the multivariate
autoregressive (MAR) (Penny and Roberts, 2002)model and the Hidden
Markov model (HMM) (Juang and Rabiner, 1985). The MAR model
characterises the behaviour of time series by linear historical interactions
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between the observed time series from different brain regions. MARs
are able to characterise the frequency structure of the data, and bymak-
ing themodel multivariate, are able to capture interactions (e.g., coher-
ence) between multiple brain regions. The HMM is a mathematical
formalism that describes a time series as a sequence of states, where
each state has its own model of the observed data (i.e., the observation
model). Here, the observation model we use corresponds to a MAR
model, and, hence, each state is related to a different set of multiregion
autoregression coefficients describing the neural oscillations. In what
follows, we will refer to the HMM with MAR observation model as the
HMM–MAR.

Although the spectral contents of the states can be obtained directly
from the (parametric)MARmodel, we propose a non-parametricmeth-
od based on the multitaper (Thomson, 1982) to obtain the states' spec-
tral information given the state time courses. The motivations of the
non-parametric approach are threefold. Firstly, the multitaper is
known to provide a reliable estimation, often superior to the parametric
approaches. Secondly, the MAR order, which is not needed for the non-
parametric estimation, strongly affects the estimation of the spectral in-
formation. Finally, MAR orders that produce sensible state discrimina-
tion for the HMM–MAR do not necessarily match the MAR orders that
are optimum for spectral estimation. We will show below that, even
when the state visits are short (around 100 ms or less), the proposed
statewise multitaper can provide reliable estimations of the entire
range of frequencies of interest, including the low frequencies.

We first showhow themodel works on synthetic data, for which the
ground-truth spectra are known. We then use the proposed model to
characterise the neural dynamics in theprimarymotor cortex (M1)dur-
ing a self-paced button press MEG experiment. We demonstrate that
the proposed approach is able to identify HMM states that are task de-
pendent despite training the HMMwith no knowledge of the task tim-
ings, and that it can produce sensible state-specific estimates of the
power spectral density (PSD), coherence and partial directed coherence
(PDC) (Sameshima and Baccala, 1999) that are significantly different
over states.

The method

We now describe the HMM–MAR, its Bayesian hierarchy and some
aspects of model selection and inference. We also provide details
about the non-parametric spectral estimation, and about two issues
that are central to source space MEG data analysis: sign ambiguity and
signal leakage. Fig. 1 illustrates the proposed workflow schematically;
each step is described below.

Definition of the states and their Markov dynamics

In this section,we describe the observationmodel and the state tran-
sitions. As mentioned above, the observation model corresponds to a

MARmodel, and the state transitions follow the (first-order)Markovian
assumption.

We first introduce some notation. Let yt ∈ ℝN be the multichannel
source signal and xt ∈ {1, …, K} the hidden state variable, with t =
1, …, T. Let A be the set of lags considered by the MAR model. We
now present the MAR model leaving A unspecified, and will get into
specifics about the choice of A in due course. Assuming Gaussian
noise and centred data, our observation model is

y0t xtj ¼ k � N
X
l∈A

y0t−lW
kð Þ
l ;Σ kð Þ

 !
; ð1Þ

whereWl
(k)

are N × N dimensional matrices representing the k-th state
autoregression coefficient matrices for lag l and the variance is given by
some random noise distribution. We denote W(k) = [W1

(k)
; …; WP

(k)
].

We shall also refer to the expectation of P(xt = k|Y) as γtk, and γt =
(γt1, …, γtK).

The noise covariance matrix Σ(k) can be chosen to be diagonal or a
full matrix. In the former case, we assume the zero-lag correlations to
be zero. In the latter case, the noise is correlated across channels,
which implies that the estimation of the autoregression coefficients
has to be done for all channels at the same time (see Appendix B). An-
other decision to be made is whether we set the noise distribution to
be equal for all states, so that Σ = Σ(k), for all k.

For the hidden state variables, we use Markov dynamics, meaning
that the probability P(xt= k) is conditionally independent of the history
of the state variable given xt − 1. Hence, we have

P xt ¼ k1 xt−1j ¼ k2ð Þ ¼ Θk1k2 ; P x1 ¼ kð Þ ¼ ηk; ð2Þ

where Θk1k2 and ηk are model paramerers that need to be inferred. The
model is graphically represented in Fig. 2.

Model complexity and model selection

In this section,we discuss the parametrisation of theMARmodel and
how to control its complexity. This is crucial, because, if theMARmodels
are too complex, the inference process (as a consequence of the
Bayesian principle of parsimony) will tend to drop most of the states
of the model by letting a few (or even one) dominant states to control
the entire time series. Albeit good in terms of the tradeoff between pre-
dictability and parsimony, this hinders the discovery of quasi-stationary
connectivity networks.

Firstly, driven by objective Bayesian principles, we use appropriate
automatic relevance determination (ARD) priors on the autoregression
coefficients. These ARD priors are Gaussian, and are imposed at two
levels: for each lag (regularising on the time–frequency dimension)
and for each pair of sources (regularising on the spatial dimension).

Fig. 1.Workflow of the proposed method.
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