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The purpose of this work is to develop a framework for single-subject analysis of diffusion tensor imaging (DTI)
data. This framework is termed Tract Orientation and Angular Dispersion Deviation Indicator (TOADDI) because
it is capable of testingwhether an individual tract as represented by themajor eigenvector of the diffusion tensor
and its corresponding angular dispersion are significantly different from a group of tracts on a voxel-by-voxel
basis. This work develops two complementary statistical tests based on the elliptical cone of uncertainty,
which is amodel of uncertainty or dispersion of themajor eigenvector of the diffusion tensor. The orientation de-
viation test examines whether themajor eigenvector from a single subject is within the average elliptical cone of
uncertainty formed by a collection of elliptical cones of uncertainty. The shape deviation test is based on the two-
tailedWilcoxon–Mann–Whitney two-sample test between the normalized shapemeasures (area and circumfer-
ence) of the elliptical cones of uncertainty of the single subject against a group of controls. The False Discovery
Rate (FDR) and False Non-discovery Rate (FNR) were incorporated in the orientation deviation test. The shape
deviation test uses FDR only. TOADDI was found to be numerically accurate and statistically effective. Clinical
data from two Traumatic Brain Injury (TBI) patients and one non-TBI subject were tested against the data obtain-
ed from a group of 45 non-TBI controls to illustrate the application of the proposed framework in single-subject
analysis. The frontal portion of the superior longitudinal fasciculus seemed to be implicated in both tests (orien-
tation and shape) as significantly different from that of the control group. The TBI patients and the single non-TBI
subject were well separated under the shape deviation test at the chosen FDR level of 0.0005. TOADDI is a simple
but novel geometrically based statistical framework for analyzing DTI data. TOADDI may be found useful in
single-subject, graph-theoretic and group analyses of DTI data or DTI-based tractography techniques.
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Introduction

Diffusion Tensor Imaging (DTI) (Basser et al., 1994a, b; Pierpaoli
et al., 1996) is an important and noninvasive magnetic resonance imag-
ing (MRI) technique used in clinical and research studies of brain white
matter architecture. Many aspects of DTI have been studied extensively,
from the diffusion tensormodel itself (Basser, 2002; Basser et al., 1994b;
Basser and Pajevic, 2003; Koay and Özarslan, 2013; Stejskal, 1965) and
its higher-order generalizations (Anderson, 2005; Descoteaux et al.,
2007, 2011; Jian et al., 2007; Liu et al., 2004; Özarslan and Mareci,
2003), to optimal experimental designs (Cook et al., 2007; Deriche
et al., 2009; Dubois et al., 2006; Jones et al., 1999; Koay et al., 2011,

2012) and its inverse problem at various levels of complexity
(Andersson, 2008; Basser et al., 1994a; Chang et al., 2005, 2012; Koay
et al., 2006; Mangin et al., 2002; Maximov et al., 2011; Veraart et al.,
2013; Wang et al., 2004). DTI continues to inspire new analyses, devel-
opments, refinements and extensions (Caruyer et al., 2013; Hutchinson
et al., 2012; Koay, 2009a, 2009b, 2014; Koay et al., 2009a, 2009b, 2011,
2012; Wu et al., 2004). Uncertainty quantification (Anderson, 2001;
Behrens et al., 2003; Beltrachini et al., 2013; Chang et al., 2007; Jeong
and Anderson, 2008; Jones, 2003; Jones and Pierpaoli, 2005; Koay
et al., 2007, 2008; Lazar and Alexander, 2003, 2005; Lazar et al., 2005;
Poonawalla and Zhou, 2004) in DTI is another important area of re-
search with wide-ranging implications to tractography (Barbieri et al.,
2011; Basser et al., 2000; Conturo et al., 1999; Mori et al., 1999;
Pajevic et al., 2002; Poupon et al., 2000, 2001) and data analyses (longi-
tudinal, single-subject, group or graph-theoretic, e.g., (Rubinov and
Sporns, 2010)).
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The purpose of this work is to develop a statistical and computation-
al framework for testing whether an individual principal direction
(i.e., major eigenvector of a diffusion tensor) and its corresponding el-
liptical cone of uncertainty (COU, see Methods for a brief review)
(Koay et al., 2007, 2008) are different from a control group of
diffusion-tensor-derived major eigenvectors and their corresponding
elliptical COUs. Two key motivations behind the work are the pursuit
of personalized or precision medicine for individual patients and to ad-
dress the current inadequacy of group analysis of DTI data in clinical TBI
studies.

TBI presents unique challenges to diagnosis due to the heterogeneity
of injury source and manifestation across subjects, and mild TBI (mTBI)
in particular is challenging due to the subtle imaging findings. Because
of the varying degrees of severity of the injuries and the spatial heteroge-
neity of the affected regions not only in an individual TBI patient but also
across TBI patients, there is a clear need to develop diagnostic methods
that are effective on an individual basis. Since no two clinical TBI cases
are alike, itmay not be appropriate to group TBI data for voxel-wise anal-
yses. The key concern is that the averaging effect of the group analysis
may smooth out salient anomalies in a single patient and cause them
to appear as normal variations within the averaged TBI data, i.e., it is
very unlikely to build up a statistical group difference at a single voxel
if there is rarely a lesion from more than one patient in a voxel.

This framework builds upon as well as extends the capability of our
previously proposed uncertainty quantification framework for DTI
(Koay et al., 2007, 2008). Our work on an analytical error propagation
framework (Koay et al., 2007, 2008) for DTI is a culmination of prior
works by others (Anderson, 2001; Jeong and Anderson, 2008; Jeong
et al., 2005; Lazar and Alexander, 2003, 2005; Lazar et al., 2005) and
our group (Koay and Basser, 2006; Koay et al., 2006). In brief, three in-
dependent studies adopted a perturbation-based error analysis
(Anderson, 2001; Basser, 1997; Chang et al., 2007) to study uncertainty
in fiber orientation and in tensor-derived quantities. These studies de-
veloped their respective error analyses from the linearmodel of the dif-
fusion tensor. Our prior experience with signal and noise
characterization in MRI (Koay and Basser, 2006) together with the ob-
servations made by Jones et al.(Jones and Basser, 2004) on the effects
of noise on tensor-derived quantities led to the adoption of the nonlin-
ear least squares model of the diffusion tensor as the model of choice
(Koay et al., 2006) for error propagation (Koay et al., 2007). The most
notable difference between the perturbation-based error analysis of
Basser (Basser, 1997) or Chang et. al. (Chang et al., 2007) and our
error propagation framework is that the former did not incorporate
the elliptical COU into the formulation while such a feature is inherent
in our framework (Koay et al., 2007). It is important to note that many
studies (Basser, 1997; Behrens et al., 2003; Chang et al., 2007; Jones,
2003; Parker et al., 2003; Polders et al., 2011) have adopted the circular
COU for modeling the uncertainty in themajor eigenvector of the diffu-
sion tensor even though converging and empirical evidence showed
that the uncertainty of the major eigenvector is generally elliptical
(Jeong et al., 2005; Lazar and Alexander, 2005; Lazar et al., 2005). The
key reason for the lack of such an important feature (the elliptical
COU) in DTI error analysis in the works of Basser and Chang is due to
the absence of the covariance matrix of the major eigenvector in their
formulations, which was recently demonstrated to be obtainable from
perturbation analysis through a simple reformulation; see (Koay et al.,
2008) for the connection between our analytical error propagation
framework and the reformulated perturbation-based error analysis.

The covariance matrix of the major eigenvector of the diffusion ten-
sor provides the necessary information to construct the elliptical COU
and related scalarmeasures such as the normalized areal and circumfer-
ential measures of the elliptical COU (Koay et al., 2008). While it is rel-
atively easy to visualize or quantify a single elliptical COU within a
voxel, it is nontrivial to test whether an individual major eigenvector
or the boundary points of its elliptical cone is within the mean elliptical
cone of uncertainty formed by a collection of elliptical COUs. This

inclusion–exclusion test is a multivariate and geometric problem and
is highly relevant to each phase of data analysis, from exploratory inves-
tigation to testing of hypotheses. While it is not hard to test the shape
characteristics of an individual elliptical COU against those of a collec-
tion of elliptical COUs, the main obstacle is in the normalization of a
family of elliptical COUs. This problem is solved through a novel utiliza-
tion of the tensor normalization technique proposed by Zhang et. al.
(Zhang et al., 2006). While there are several published approaches to
performing voxel-based analysis for DTI (Schwarz et al., 2014; Smith
et al., 2006; Zhang et al., 2006), it is not the intent of this work to com-
pare relative merits of these approaches. Challenges of voxel-based
analysis have been extensively studied by (Ashburner and Friston,
2000) and one of the key challenges is registration errors, which may
cause unnecessary deformations or distortions that do not appear in
the original image. One of the ways to minimize the registration errors
in statistical inference is through skeletonization as suggested in
Tract-Based Spatial Statistics (TBSS) of (Smith et al., 2006) and our ap-
proach is to focus only on voxels within the white matter region that
satisfy further criteria such as goodness of fit.

To the best of our knowledge, no proposed framework addresses the
problems raised above. We propose a novel and conceptually simple
statistical and computational pipeline to address these problems. Partic-
ular attention is paid to the antipodally symmetric nature of the ellipti-
cal cones in order to develop an unbiased orientation of the elliptical
COUs. The inverse Gnomonic projection (Coxeter, 1989; Koay et al.,
2008) of the elliptical COU onto the unit sphere is used to ensure the
tests are well-defined.

The proposed framework, which we termed it as Tract Orientation
and Angular Dispersion Deviation Indicator (TOADDI), is capable de-
tecting a statistically and orientationally significant deviation of a prin-
cipal diffusion direction as compared to those from a group of controls
on a voxel-by-voxel basis. It can also detect any statistically significant
deviation in the shape characteristics such as the normalized arealmea-
sure and the normalized circumferential measure of the elliptical cone
as compared to those from the control group. While it is beyond the
scope of this paper, which focusesmainly on the proposedmethodolog-
ical framework, to pursue a thorough investigation of all the available
clinical TBI cases acquired at the National Intrepid Center of Excellence
(NICoE), and in the interest of expediting the process of translational re-
search in clinical TBI studies, we believe it would be beneficial to illus-
trate the application of the proposed framework on a few clinical TBI
cases with complete details of the processing pipeline.

Here, we present two key contributions of the present work. First,
this work incorporates the methods of False Discovery Rate (FDR)
(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001;
Yekutieli and Benjamini, 1999), popularized by Genovese et al.
(Genovese et al., 2002) within the context of neuroimaging to control
the proportion of false positives in multiple comparison problems, and
False Non-discovery Rate (FNR) (Genovese and Wasserman, 2002)
within the proposed generalizedmultivariate test for testing orientation
differences. Second, this work shows how differences in shape charac-
teristics – such as area and circumference – of the elliptical cones be-
tween a single subject and a control group can be tested using the
nonparametric test of Wilcoxon–Mann–Whitney (WMW) (Mann and
Whitney, 1947; Wilcoxon, 1945).

Finally, we should mention that the proposed methodology is not a
new tissue model at the neuronal level, e.g., (Zhang et al., 2012).
While the angular dispersion of the major eigenvector may be affected
by the underlyingmicrostructure aswell as noise, the geometrical char-
acteristics of the angular dispersion may only be a gross representation
of an admixture of the underlying biophysical processes. Further inves-
tigation is needed to find out whether the angular dispersion of the
major eigenvector corresponds well with the underlying biophysical
processes at the neuronal level. A comparison with some of the existing
tissue models would be very interesting. This comparative study is
being planned but it is beyond the scope of this work.
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