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Humans can flexibly select locations, features, or objects in a visual scene for prioritized processing. Although it is
relatively straightforward to manipulate location- and feature-based attention, it is difficult to isolate object-
based selection. Because objects are always composed of features, studies of object-based selection can often
be interpreted as the selection of a combination of locations and features. Herewe examined the neural represen-
tation of attentional priority in a paradigm that isolated object-based selection. Participants viewed two
superimposed gratings that continuously changed their color, orientation, and spatial frequency, such that the
gratings traversed the same exact feature values within a trial. Participants were cued at the beginning of each
trial to attend to one or the other grating to detect a brief luminance increment, while their brain activity was
measured with fMRI. Using multi-voxel pattern analysis, we were able to decode the attended grating in a set
of frontoparietal areas, including anterior intraparietal sulcus (IPS), frontal eye field (FEF), and inferior frontal
junction (IFJ). Thus, a perceptually varying object can be represented by patterned neural activity in these
frontoparietal areas. We suggest that these areas can encode attentional priority for abstract, high-level objects
independent of their locations and features.

© 2016 Elsevier Inc. All rights reserved.

Selection of task-relevant information is necessary to guide efficient
and adaptive behavior in a complex environment. Attention is the
mechanism that can select different aspects of a scene, such as locations,
features and objects (Carrasco, 2011; Scolari et al., 2014). Although the
neural basis of attention has been extensively studied (Kastner and
Ungerleider, 2000; Reynolds and Chelazzi, 2004), a central question re-
mains: how is top-down selection implemented in the brain?

A key assumption of attention theories is that higher-order brain
areas maintain attentional priority, akin to a template, that exerts top-
down control to guide selection (e.g., Deco and Rolls, 2004; Desimone
and Duncan, 1995; Wolfe, 1994). For the control of spatial attention,
the neural representation of spatial priority has been strongly
linked to spatiotopic neural responses in dorsal frontoparietal areas
(Bisley and Goldberg, 2010). Neurophysiological evidence from
microstimulation studies suggest that these higher-level topographic
representations send top-down control signals to earlier visual areas
to implement spatial selection (Ekstrom et al., 2008; Moore and
Armstrong, 2003; Moore and Fallah, 2004). For the control of feature-
based attention, evidence from human fMRI andmonkey neurophysiol-
ogy has suggested that the dorsal frontoparietal areas can also represent
the attended visual feature such as specific color and motion direction
(Liu et al., 2011; Liu and Hou, 2013; Mendoza-Halliday et al., 2014).
However, real scenes typically contain many objects, and observers

often select whole perceptual objects (Scholl, 2001). This raises the
question of how attentional priority for perceptual objects is represent-
ed in the brain.

One key challenge in studying object-based attention is that objects
are always composed of features so it can be difficult to ascertain that
selection occurred on the level of whole objects instead of elemental
features. For example, in a popular paradigm where participants were
instructed to attend to either a face or a house in a superimposed face/
house image, the face and house stimuli differ in terms of low level fea-
tures such as curvature and spatial frequency (Watt, 1998). Thus behav-
ior in these studies can be potentially facilitated by feature-level
selection, making it difficult to attribute results to object-based
attention.

The goal of the present study is to investigate the neural representa-
tion of attentional priority for perceptual objects. Based on previous
work showing that the dorsal frontal and parietal areas represent atten-
tional priority for non-spatial features,we hypothesized that these areas
can also represent priority for whole perceptual objects. To isolate
object-level selection, we employed a compound stimulus composed
of two objects that continuously evolved inmultiple feature dimensions
(Blaser et al., 2000). We then applied both fMRI univariate analysis and
multivariate pattern analysis to investigate neural signals that can rep-
resent specific attended objects. Because we employed a cueing ap-
proach to direct attention, static featural differences associated with
the cue could potentially account for classification results. Thus we
also ran a control experiment to rule out the contribution of feature-
based attention to our results.
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Materials and methods

Participants

Twelve individuals (six females, mean age: 25.5), including the au-
thor, participated in the experiment. Participants were recruited from
theMichigan State University community (graduate and undergraduate
students and the author) and all had normal or corrected-to-normal vi-
sual acuity and reported to have normal color vision. Participants were
paid at the rate of $20/h for their time. They gave informed consent
under the study protocol approved by the Institutional Review Board
at Michigan State University. Sample size was determined prior to
data collection and was based on comparable studies in the literature
on fMRI studies of visual attention.We also conducted a power analysis,
using effect size estimated from a previously published study in our lab
that used a similar paradigm to decode attentional state (Hou and Liu,
2012). We pooled decoding accuracies from two frontoparietal sites
(IPS and FEF) across participants to estimate the effect size. We then
usedG*Power 3.1.9 (Faul et al., 2007) to estimate the power in detecting
a true effect using a two-tailed t-test for significant above-chance classi-
fication. This analysis showed that a sample of 12 participants would
give a power of 0.82.

Stimulus and display

The visual stimuli consisted of two superimposed Gabor patches
(σ = 1.1°) that varied in their orientation, color, and spatial frequency
simultaneously (Fig. 1). The evolution of the features followed fixed, cy-
clic trajectories in their respective dimensions. On each trial, the Gabors
rotated counterclockwise through all possible orientations at a speed of
59°/s; the colors of the Gabors traversed through all hues on a color cir-
cle in the CIE L*a*b space (L = 30, center: a = b= 0, radius = 80) at a
speed of 59°/s; the spatial frequency of the Gabors varied smoothly in a
sinusoidal fashion from 0.5 cycles/deg. to 3 cycles/deg. at a speed of
0.41 cycles/deg./s. Thus, in 6.1 s (the duration of the stimulus movie),
the Gabors rotated two full cycles in orientation, traversed one cycle
in the color space, and one full period in the sinusoidal modulation of
spatial frequency. All features evolved continuously and simultaneously
with maximal offset between the two Gabors (opposite angles in color
space, orthogonal orientations, opposite phases in the modulation of
spatial frequency).

All stimuli were generated using MGL (http://justingardner.net/
mgl), a set of custom OpenGL libraries running in Matlab (Mathworks,
Natick, MA). Images were projected on a rear-projection screen located
in the scanner bore by a Toshiba TDP-TW100Uprojector outfittedwith a
custom zoom-lens (Navitar, Rochester, NY). The screen resolution was
set to 1024 × 768 and the display was updated at 60 Hz. Participants
viewed the screen via an angled mirror attached to the head coil at a
viewing distance of 60 cm. Color calibration was performed with a
MonacoOPTIX colorimeter (X-rite, Grand Rapids, MI), which generated
an ICC profile for a display. We then used routines in Matlab's Image
Processing Toolbox to read the ICC profile and calculate a transforma-
tion from the CIE L*a*b space to the screen RGB values.

Task and design

Participants tracked one of the Gabor patches on each trial and per-
formed a change detection task. At the beginning of each trial, a number
(“1” or “2”, 0.4°, white) appeared in the center of the display for 0.5 s. In
prior practice sessions (see below), participants had learned to associate
“1”with theGabor thatwas initially red, horizontal, and high spatial fre-
quency, and to associate “2”with the Gabor that was initially cyan, ver-
tical, and low spatial frequency. The initial image of the two Gabors
appeared together with the number cue. We referred to these two
Gabors as “Object 1” and “Object 2” in the instruction, and we adopt
the same terminology for the rest of this report. During the subsequent
6.1 s, the two objects continuously evolved through the features space
as described above, and participants were instructed to track the cued
object and monitor for a brief brightening event (0.2 s). On each trial,
there was either a brightening of the cued object (target), a brightening
of the uncued object (distracter), or no brightening of either object
(null). The three trial types (target, distracter, null) were interleaved
and equally probable (proportion 1/3 each). The timing of targets and
distracters conformed to a uniform distribution in two possible time
windows: 1.5–2.5 s or 4.5–5.5 s after trial onset. These time windows
were chosen such that the two objects had similar spatial frequency,
which made the task challenging. The magnitude of the brightening
(luminance increment) was determined for each participant at the be-
ginning of the scanning session with a thresholding procedure (see
Practice Sessions below). Participants were instructed to press a button
with their right index finger if they detected the target (a brief brighten-
ing on the cued object), and withheld response otherwise. They were
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Fig. 1. Schematic of a trial in the main experiment. Two superimposed Gabors continuously changed color, orientation, and spatial frequency. Sample images are shown on the left; the
trajectories in feature space are shown on the right (solid and dashed curves represent two objects). Note color and orientation can be conceived as circular dimensions, whereas
spatial frequency is a linear dimension. Here a “2” instructs participants to attend to the second object (the initially low frequency, cyan, vertical Gabor).
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