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Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce
systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings per-
formed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as
well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was
introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously
acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it in-
volves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here
we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facil-
itate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in
MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an auto-
matic identification ofmotion-related ICs. aE-REMCORhas been used to perform retrospectivemotion correction
for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3 TMRI scan-
ner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio
(TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion pa-
rameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI
data. In particular, when there are significant rapid headmovements during the scan, a large TSNR improvement
and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement
over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR im-
provement values exceeding 55%. The average correction efficiency over the 305 fMRI scans is 18% and the largest
achieved efficiency is 71%. The utility of aE-REMCOR on the resting state fMRI connectivity of the default mode
network is also examined. The motion-induced position-dependent error in the DMN connectivity analysis is
shown to be reduced when aE-REMCOR is utilized. These results demonstrate that aE-REMCOR can be conve-
niently and efficiently used to improve fMRI motion correction in large clinical EEG-fMRI studies.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Head motion has been recognized as a major source of artifacts in
fMRI data since early days of fMRI (e.g. Cox and Hyde, 1997; Friston
et al., 1995, 1996; Hajnal et al., 1994; Jiang et al., 1995). In task fMRI,
motion-induced artifacts often correlate with experimental tasks
(Hajnal et al., 1994), leading to inaccurate estimates of BOLD activity
levels and reduced significance of fMRI findings. This issue is particular-
ly important for frontal and prefrontal brain regions that usually exhibit
the largest motions. In resting-state fMRI, head movements introduce

systematic changes in estimated fMRI functional connectivity strength
across the brain (Power et al., 2012; VanDijk et al., 2012). Such spurious
changes can lead to incorrect interpretations of the functional connec-
tivity results on the group level if the data is ineffectively preprocessed
(Power et al., 2012; Saad et al., 2013; Gotts et al., 2013; Jo et al., 2013).
The traditional fMRI motion correction approach bases on spatial co-
registration of 3D fMRI volumes (e.g. Friston et al., 1995; Cox and
Jesmanowicz, 1999). Despiking at the beginning of the preprocessing
pipeline further attenuates the fMRI motion effect (Jo et al., 2013;
Satterthwaite et al., 2013). The traditional approach implicitly assumes
that all motion occurs between the volume acquisitions (Cox and Hyde,
1997). Thus, it cannot adequately take into account effects of faster
intra-volumemovements (Beall and Lowe, 2014). It has been suggested
that a slice-based fMRI motion correction can be superior to the
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traditional volume registration approach (Beall and Lowe, 2014;
Zotev et al., 2012).

Multimodal brain imaging, combining fMRI with simultaneous EEG
recordings (e.g. Mulert and Lemieux, 2010), offers new exciting oppor-
tunities for fMRI motion correction. Simultaneous EEG-fMRI combines
the advantages of the high temporal resolution of EEG and the high spa-
tial resolution of fMRI. While the artifact on the fMRI data can be mini-
mized with the use of MR-compatible EEG system, introduction of fMRI
environment related artifacts to the EEG data is inevitable. In particular,
cardioballistic and motion artifacts are exacerbated inside an MR scan-
ner. These artifacts can be reduced with designated hardware setup
(Bonmassar et al., 2002; Masterton et al., 2007), or corrected effectively
by independent component analysis (Srivastava et al., 2005; Mantini
et al., 2007).

Recently, we introduced a method for EEG-assisted retrospective
motion correction of fMRI data (E-REMCOR) that employs the EEG
array as a sensitive motion detector in addition to recording neuronal
activity (Zotev et al., 2012). In this method, voltage artifacts induced
in the EEG array leads due to head motion in a strong uniform mag-
netic field of an MRI scanner are used to define regressors describing
rotational head movements with millisecond temporal resolution.
E-REMCOR makes it possible to regress out the effects of rapid head
movements from unprocessed fMRI data on a slice-by-slice basis
prior to volume registration. Thus, E-REMCOR complements both the
traditional fMRI volume registration approach, which performs better
for slower head motions, and the RETROICOR method for slice-specific
correction of fMRI cardiorespiratory artifacts (Glover et al., 2000).
E-REMCOR does not require any specialized equipment (beyond the

EEG-fMRI instrumentation) and can be applied retrospectively to any
existing EEG-fMRI dataset.

Application of E-REMCOR involves an independent component anal-
ysis (ICA) of EEG data and identification of independent components
(ICs) corresponding to different head motions. This process requires a
close examination of the EEG recordings and a careful evaluation of
the IC properties. Therefore, an automation of E-REMCOR to enable a ro-
bust and efficient motion correction without human supervision is
desirable. In this paper, we describe such an automation extension of
E-REMCOR, which we refer to as aE-REMCOR. We explicitly detail the
quantitative criteria that effectively distinguish the different motion
ICs. We also evaluate its performance for a large number of EEG-fMRI
datasets. An improved automatic fMRI motion correction afforded by
aE-REMCOR would provide an additional incentive for recording EEG
during fMRI, and thus encourage a broader use of simultaneous EEG-
fMRI. It would also greatly benefit large clinical studies by improving
fMRI data quality and reducing numbers of subjects excluded due to
excessive motion.

Methods

E-REMCOR

The aE-REMCOR method is an automation extension of E-REMCOR.
E-REMCOR is based on the observation that voltage artifacts
(electromotive force, EMF) induced in EEG leads due to rigid-body
movements of the head in the uniformmagnetic field of anMRI scanner
can be analytically related to time derivatives of real-time rotational
head motion parameters (Zotev et al., 2012). Definition of the high-
temporal-resolution E-REMCOR regressors is independent of the fMRI
pulse sequence properties. The MR artifacts are removed from the EEG
data bymeans of the average artifact subtraction (Allen et al., 2000) be-
fore the EEG data are used for E-REMCOR.

Application of E-REMCOR for fMRI motion correction includes three
steps. First, an independent component analysis (ICA, e.g. Bell and
Sejnowski, 1995; Makeig et al., 1997) is performed for the EEG data:

Vi tð Þ ¼
XN
j¼1

bij F j tð Þ þ εi tð Þ; i ¼ 1:::N: ð1Þ

Here, {Vi(t)} are signals from N EEG channels, {Fj(t)} are the corre-
sponding independent components (ICs), {bij} are elements of the ICA
back-projection matrix, and εi(t) is an error term also including the
ith-channel's Gaussian noise The ICs Fk(t), k = 1...K, approximating
random-motion and/or cardioballistic (CB) artifacts VEMF

(i) (t) are

V ið Þ
EMF tð Þ≈

XK
k¼1

bik Fk tð Þ; i ¼ 1:::N;K ≤N: ð2Þ

The identification criteria for the random head motion are outlined
in Zotev et al., 2012. The quantitative classification of the criteria for
the random head motion, together with the cardioballistic motions
caused by cardiac pulsations, will be detailed in the following sections.

Second, eachmotion-related IC Fk(t) is band-pass filtered from 0.1 to
20 Hz and integrated over time (with constant Δt= 0.4 s) to yield two
E-REMCOR regressors, R1

(k)(t) and R2
(k)(t), having the same temporal

Fig. 1. The sketch of the automatic identification of ICs through the analyses of the mean
power spectral density, topographic map, and contribution to the EEG signal. Possible
blink and saccade ICs are removed from the motion ICs selection.

Fig. 2. (a)–(f) The mean power spectral density of (a) a rapid head movement IC; (b) a cardioballistic motion IC; (c) a mixture of cardioballistic motion and rapid head movement IC;
(d) another rapid head movement IC with reflection points in the RM range; (e) a blink IC; (f) a saccade IC. (g)–(h): The rises of peaks B and E in (c) from their neighboring left and
right minima when the neighboring right minimum is below 8 Hz. (i)–(j): The rises of the NR peaks G and K in (c) and (e). (k): The rise of the reflection points in (d). In (a)–(f), S0 is
the difference between the maximum and minimum spectrum power below 4 Hz. Motion frequency range (MO) refers to the combined frequency range of RM and CB. RM, CB and
MO peaks stand for the peaks found in the RM, CB and MO frequency ranges respectively. In (g)–(h), the peak rise is defined as the average of the left and right rises. In (i), the peak
rise is the power difference between the peak G and the minimum between F and G. In (j), the peak rise is the power difference between the peak K and the minimum value
between J and K. In (k), the rise of the reflection point H is the power difference between H and I, and the rise of the reflection point I is the power difference between I and
S(v = 4.5 Hz).
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