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Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain re-
gions still actively interactwith each otherwhile a subject is at rest, and such functional interaction is not station-
ary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying
patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues
along with the network modelling. Specifically, we propose a novel methodological architecture that combines
deep learning and state-spacemodelling, and apply it to rs-fMRI basedMild Cognitive Impairment (MCI) diagno-
sis.Wefirst devise a DeepAuto-Encoder (DAE) to discover hierarchical non-linear functional relations among re-
gions, bywhichwe transform the regional features into an embedding space,whose bases are complex functional
networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate
dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable
but can be inferred from observations statistically. By building a generative model with an HMM, we estimate
the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy
control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of
the proposed method, we performed experiments on two different datasets and compared with state-of-the-art
methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional
connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by
means of a graph-theoretic approach.
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Introduction

A human brain can be understood as a complex system with differ-
ent structural regions dedicated for different functions,which are locally
segregated but globally integrated to process various types of informa-
tion. Over the last decades, it has been one of the major concerns to
investigate the underlying functional mechanism of a human brain in
the fields of basic and clinical neuroscience. The functional Magnetic
Resonance Imaging (fMRI) that measures the changes of Blood Oxygen
Level-Dependent (BOLD) signal in a non-invasive manner has become
one of the most successful investigative tools to explore the functional
characteristics or properties of a brain.

In the meantime, ever since Biswal et al. (1995) discovered that
different brain regions still actively interact with each otherwhile a sub-
ject is at rest, i.e., not performing any cognitive task, resting-state fMRI
(rs-fMRI) has been widely used as one of the major tools to investigate

regional associations or brain networks (Rombouts et al., 2005; Fox
et al., 2005; Buckner et al., 2008). The rs-fMRI provides insights to ex-
plore the brain's functional organization and to examine altered or aber-
rant functional networks possibly caused by brain disorders such as
Alzheimer's Disease (AD) (Greicius et al., 2004; Li et al., 2002),Mild Cog-
nitive Impairment (MCI) (Rombouts et al., 2005; Sorg et al., 2007;Wang
et al., 2007; Zhang et al., 2012; Chase, 2014), autism spectrum disorder
(Monk et al., 2009; Khan et al., 2013), schizophrenia (Liang et al., 2006;
Zhou et al., 2007; Garrity et al., 2007; Lynall et al., 2010), and depression
(Anand et al., 2005; Greicius et al., 2007; Craddock et al., 2009). In this
work,we focus on the early diagnosis ofMCI based on the computation-
al analysis of rs-fMRI. Due to a high rate of progression from MCI to
AD in one year, approximately 10 to 15% according to Alzheimer's
Association's's (2012)), it has been of great importance for early detec-
tion or diagnosis ofMCI and seeking a proper treatment to prevent from
progressing toAD. Froma clinical point of view, it is advantageous to use
rs-fMRI to investigate functional characteristics in the rs-fMRI of
patients, who may not be able to perform complicated cognitive tasks
during scanning. In these regards, the analysis of functional characteris-
tics inherent in rs-fMRI is playing a core role for brain disease diagnosis
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or prognosis (Handwerker et al., 2012; Li et al., 2012; Leonardi et al.,
2013; Hjelm et al., 2014; Wee et al., 2014; Suk et al., 2015c).

To date, the functional characteristics in a brain have been studied in
two different approaches. The effective connectivity (Friston et al., 1993)
investigates the causal relations between regions, e.g., one region exerts
over another. The functional connectivity (Van Dijk et al., 2010), the
other type of approach, measures functional associations between re-
gions by means of temporal coherence or correlation. In this paper,
we mainly consider the functional connectivity, which is computation-
ally less intensive for whole-brain network analysis. It is worth noting
that recent studies investigating the complex brain functions have ob-
served the phenomenon that functional connectivity spontaneously
changes over time (Chang and Glover, 2010; Bassett et al., 2011;
Hutchison et al., 2013), i.e., dynamic rather than stationary. Functional
dynamics include changes in the strength of connection between
regions, and also the number of connections linked to regions. Motivat-
ed by those studies, there have been efforts to estimate temporal
changes in functional connectivities and then use functional properties
extracted from the estimated dynamic functional connectivities for
disease diagnosis.

To our best knowledge, many existing methods for MCI diagnosis
with rs-fMRI typically assumed stationarity on a functional network
over time and explicitly modelled it by different methods such as
Pearson's correlation, partial correlation (Liang et al., 2012), indepen-
dent component analysis (Jafri et al., 2008; Li et al., 2012), and sparse
linear regression (Wee et al., 2014). Recently, (Faisan et al., 2007;
Hutchinson et al., 2009), and (Janoos et al., 2011) independently
devised different types of state-space models to explore the dynamic
characteristics of functional activation and applied for event-related
fMRI data analysis. Due to the use of variables related to external stim-
ulus, i.e., event, those models are not suitable for rs-fMRI data analysis.
Meanwhile, Leonardi et al. devised an Eigen-decomposition based
method to model functional dynamics with a sliding-window tech-
nique (Leonardi et al., 2013) and Eavani et al. proposed tomodel sparse
basis learning within a Hidden Markov Model (HMM) framework
(Eavani et al., 2013).

In this paper, we propose a novel method of modelling functional
dynamics inherent in rs-fMRI by means of probabilistic models. Specif-
ically, rather than computing correlationmatrices and extracting graph-
theoretic features (Rubinov and Sporns, 2010) such as clustering coeffi-
cients and modularity as commonly performed in the literature, we
explicitly model dynamic changes of functional characteristics obtained
from regional mean time series of rs-fMRI. In a testing phase, ourmodel
estimates the likelihood of a testing sample as MCI and Normal healthy
Control (NC), based on which we diagnose MCI. Note that, compared to
Eavani et al.'s work, where they utilized the original high-dimensional
features, in our method, we devise a Deep Auto-Encoder (DAE) that
hierarchically discovers non-linear relations among regional features
and helps circumvent the problem of high dimensionality, a common
in neuroimaging analysis, and then train a dynamic state-space model,
i.e., HMM.While Leonardi et al.'smethod fails to reflect the spontaneous
changes due to the use of a sliding window strategy, the proposed
method probabilistically determines the spontaneous changes based
on an observation.

It should be noted that the preliminary version of this work was
presented in (Suk et al., 2015a). Compared to the preliminary ver-
sion of this manuscript, we have extended our work by: 1) carrying
out more extensive experiments with an additional dataset from
the ADNI2 cohort and 2) analyzing the learned models and the esti-
mated functional connectivities in various perspectives. Although, in
this paper, we deal with MCI data only, our method can be also used
to understand the functional characteristics of other diseases such as
autism, schizophrenia, and depression. In addition, thanks to its
capability of estimating dynamic functional connectivities from rs-
fMRI, ourmethod can be used for neuroscientific studies on function-
al organization in a brain.

Materials and preprocessing

In this work, we use two independent rs-fMRI datasets, namely, an
ADNI2 dataset publicly available online1 and an in-house dataset.

ADNI2 cohort

We used a cohort of 31 early MCI subjects (14F/17M) and 31 age-
matched NC subjects (17F/14M) from ADNI22. The mean ages of MCI
and NC groups are 73.9 ± 4.9 and 73.8 ± 5.5, respectively. All subjects
were scanned at different centers using 3.0 T Philips Achieva scanners
with the same scanning protocol and parameters of Repetition Time
(TR) = 3000 ms, Echo Time (TE) = 30 ms, flip angle = 80°, acquisition
matrix size = 64 × 64, 48 slices, 140 volumes, and a voxel thickness =
3.3 mm.

In-house cohort

It is recruited for 37 participants of 12 MCI subjects (6F/6M) and
socio-demographically matched 25 NC subjects (16F/9M). The mean
ages of MCI and NC are 75.0 ± 8.0 and 72.9 ± 7.9, respectively. The
data were acquired on a 3.0 T GE scanner (Signa EXCITE, GE Healthcare)
using a SENSE inverse-spiral pulse sequence with the parameters of
TR = 2000 ms, TE = 32 ms, flip angle = 77°, acquisition matrix
size = 64 × 64, 34 slices, 180 volumes, and a voxel thickness = 4 mm.

Preprocessing

The prevalent preprocessing procedure for rs-fMRI was performed
using the SPM8 software package3. Specifically, we discarded the
first 10 rs-fMRI volumes of each subject prior to further processing to en-
sure magnetization equilibrium. The remaining volumes were then
corrected for the staggered order of slice acquisition that was used during
echo-planar scanning so that the data on each slice correspond to the
same point in time. The images were realigned with the image at the
time point of TR/2 as reference to minimize relative errors across each
TR. After correcting acquisition time delay, the rs-fMRI volumes of each
subject were realigned by means of a least squares technique and a
rigid body spatial transformation. The first volume of each subject was
used as the reference to which all subsequent volumes were realigned
for the purpose of head-motion artifact removal in the rs-fMRI time-
series. We assessed the rotation and translation of every subject and
found that all the participants showed no excessive head motion with a
displacement of less than 1.5 mm or an angular rotation of less than
1.5° in any direction. There were no significant group differences in
head-motion for all subjects4. To furtherminimize the effects of headmo-
tion, we also applied Friston 24-parametermodel (6 headmotion param-
eters, 6 head motion parameters from the previous time point, and 12
corresponding squared items). After realignment, the volumes were
resliced such that they match the first volume voxel-by-voxel. We then
normalized rs-fMRI images to the MNI space with a voxel size of
3 × 3 × 3 mm3.

To further reduce the effects of nuisance signals and focus on the sig-
nals of graymatter, we regressed out ventricle andwhite matter signals
as well as six head-motion profiles based on (Van Dijk et al., 2010). Due
to the ongoing controversy of removing the global signal in the process-
ing of rs-fMRI data (Fox et al., 2009; Murphy et al., 2009), we omitted
the process of global signal regression (Supekar et al., 2008; Lynall

1 Available at ‘http://www.loni.ucla.edu/ADNI’.
2 There are 3 different subtypes of MCI subjects in ADNI2 dataset, i.e., earlyMCI, normal

MCI, and late MCI. In this study, to minimize the effect of different image sizes and resolu-
tions, we selected images from early MCI and healthy normal subjects with the same im-
age dimension and image resolution.

3 Available at ‘http://www.fil.ion.ucl.ac.uk/spm/software/spm8/’.
4 The smallest p-value for 6 headmotion parameters between patient and healthy sub-

jects was 0.218.
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