
Representational dynamics of object recognition: Feedforward and
feedback information flows

Erin Goddard a,b,⁎, Thomas A. Carlson a,b, Nadene Dermody a, Alexandra Woolgar a,b

a Perception in Action Research Centre (PARC) and Department of Cognitive Science, Macquarie University, Sydney, NSW 2109, Australia
b ARC Centre of Excellence in Cognition and its Disorders (CCD), Macquarie University, Sydney, NSW 2109, Australia

a b s t r a c ta r t i c l e i n f o

Article history:
Received 18 June 2015
Accepted 5 January 2016
Available online 13 January 2016

Object perception involves a range of visual and cognitive processes, and is known to include both a feedfoward
flow of information from early visual cortical areas to higher cortical areas, along with feedback from areas such
as prefrontal cortex. Previous studies have found that low and high spatial frequency information regarding ob-
ject identity may be processed over different timescales. Here we used the high temporal resolution ofmagneto-
encephalography (MEG) combined with multivariate pattern analysis to measure information specifically
related to object identity in peri-frontal and peri-occipital areas. Using stimuli closely matched in their low-
level visual content, we found that activity in peri-occipital cortex could be used to decode object identity from
~80 ms post stimulus onset, and activity in peri-frontal cortex could also be used to decode object identity
from a later time (~265 ms post stimulus onset). Low spatial frequency information related to object identity
was present in theMEG signal at an earlier time than high spatial frequency information for peri-occipital cortex,
but not for peri-frontal cortex.We additionally usedGranger causality analysis to compare feedforward and feed-
back influences on representational content, and found evidence of both an early feedfoward flow and later feed-
back flow of information related to object identity. We discuss our findings in relation to existing theories of
object processing and propose how the methods we use here could be used to address further questions of the
neural substrates underlying object perception.
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Visual object recognition and identification is an important task in
everyday life, and the speed and accuracy with which we can identify
objects are consistent with the visual system devoting considerable re-
sources to this ecologically relevant process. Object perception involves
a range of visual and cognitive processes, including a feedfoward flow of
information along the ‘ventral stream’ of visual cortex (for example, see
Tanaka, 1996; Grill-Spector et al., 2001), and also feedback from frontal
and parietal areas such as prefrontal cortex. However, theway in which
these areas interact to contribute to object perception remains unclear
despite a growing experimental literature on the topic.

A range of theories of object perception (Bullier, 2001; Bar, 2003;
Peyrin et al., 2010; Tapia and Breitmeyer, 2011; Horr et al., 2014;
Hochstein and Ahissar, 2002) have hypothesized that very early top-
down feedback, around 100–150 ms after stimulus onset (Bar et al.,
2006), carries content regarding object identity from prefrontal cortex
to the traditional ‘bottom-up’ dorsal and ventral visual pathways.
These theories are based on results such as the speed with which
humans can correctly respond to simple object categorisation tasks

(for example, 120 ms after stimulus onset, Kirchner and Thorpe,
2006), combined with reports that early activity (130–150 ms after
stimulus onset) from prefrontal sites can vary with object recognition
(Thorpe et al., 1996; Bar et al., 2006).

The relative timing of feedforward and feedback flows of informa-
tion in object perception has been suggested to depend on the spatial
frequency content of the image, with the earliest information about ob-
ject information coming from low spatial frequency (low-pass) image
components (Bar et al., 2006; Chaumon et al., 2014; Fintzi and Mahon,
2014). This is broadly consistent with psychophysical results implying
that low spatial frequency image components are processed prior to
high spatial frequency components (Hughes et al., 1996; Parker et al.,
1992, 1997; Schyns and Oliva, 1994; Neri, 2011). However, these effects
are likely contingent on the relative usefulness of low and high spatial
frequencies to the participant's task (De Gardelle and Kouider, 2010;
Stein et al., 2014; Patai et al., 2013), which challenges the notion of
clear segregation between rapidly propagated low-pass signals and
slower ‘High-pass’ signals. Furthermore, neuroimaging studies provid-
ing evidence for differential processing of high and low spatial frequen-
cy stimuli in object processing (Bar et al., 2006; Chaumon et al., 2014;
Fintzi and Mahon, 2014) have used stimuli varying in total spatial fre-
quency content, and have not equated the stimulus types for low-level
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properties such as overall luminance and contrast. This leaves open the
possibility that their differential effects may be due to different image
statistics across conditions.

Here we devised a new methodology to explore the timing of
feedforward and feedback flows of object-related information based
on magnetoencephalography (MEG) recordings. We applied a time re-
solved multivariate pattern classification analysis to magnetoencepha-
lography (MEG) data (Carlson et al., 2011, 2013; Isik et al., 2014) and
compared the object-related information in peri-occipital and peri-
frontal areas at different time points. Using a novel extension of Granger
causality analysis, we tested for evidence that the representational
structure of object-related information in frontal regions predicted the
representational structure of later responses in occipital areas.

Using this method, we compared the brain's processing of low and
high spatial frequency object-related information. We used stimuli
that had the same power at each spatial frequency in their Fourier am-
plitude spectra, and the same overall contrast, varying only the ‘diag-
nostic’ spatial frequencies (De Gardelle and Kouider, 2010). Stimuli in
our ‘Low-pass’ condition had object signal in the low spatial frequencies
while high spatial frequencies were phase-randomized, while for the
‘High-pass’ condition this was reversed.

Methods

Participants

Twelve participants (nine female, ten naïve to the purposes of the
study) took part in an initial psychophysical experiment used to cali-
brate the visual images for their low and high spatial frequency content.
Nine participants (five female, eight naïve to the purposes of the study)
completed the second psychophysical experiment and the MEG experi-
ment. All had normal or corrected to normal vision, and naïve participants
were paid for their time. All participant recruitment and experiments
were conducted with the approval of the Macquarie University Human
Research Ethics Committee.

Visual stimuli

Visual stimuli were generated and presented using Matlab (version
R2013a) and routines from Psychtoolbox (Brainard, 1997; Pelli, 1997).
In all experiments we used the same set of 24 images, which were se-
lected from a set of 92 supplied by Nikolaus Kriegeskorte (described
in Kriegeskorte et al., 2008). All images were segmented real world ob-
jects on a gray background. In both psychophysical and imaging exper-
iments, participants judged whether each presented object was smaller
or larger than a shoebox.We chose the 24 images such that for both the
‘smaller than a shoebox’ and ‘larger than a shoebox’ groups there were
six animate and six inanimate objects.

Each image was 175 × 175 pixels, and subtended 15 degrees visual
angle (dva) in each experiment. We converted each original color
image to grayscale by setting the RGB coordinate of each pixel to the av-
erage of the R, G, and B coordinates of that pixel in the original image. In
order to equate all images for their power at each orientation and spatial
frequency, we set the amplitude matrix of each image to the average
amplitude matrix of all images. To find the average amplitude matrix
across the 24 images, we performed a two-dimensional discrete Fourier
transform of each image, which yielded an amplitude and phase matrix
for each image, and then for each point in amplitudematrixwe used the
average amplitude across the 24 images. We used the same amplitude
matrix for every stimulus image, varying only the phase matrix that
was used in the two-dimensional inverse discrete Fourier transform to
generate a given stimulus.

The phase matrix of each stimulus was derived from one of the 24
images, with varying amounts of phase randomization introduced to
the phase matrix. The four stimulus conditions, along with the pattern
of phase randomization in each case, are illustrated in Fig. 1. Phase

randomizationwas introduced to oneormore of three spatial frequency
bands: low (b 0.90 cycles/dva), medium (≥ 0.90 cycles/dva and ≤ 1.03
cycles/dva) and high (N 1.03 cycles/dva). In the ‘Low-pass’ condition,
the phase of spatial frequencies in the high andmediumbandswas ran-
domized, and in the ‘High-pass’ condition the low and medium bands
were randomized. In the ‘Strong signal’ and ‘Weak signal’ stimulus con-
ditions, the phase of all spatial frequencies in themediumbandwas ran-
domized, along with varying proportions of the frequencies in the low
and high bands, as detailed below.

Since every image contained at least some phase randomization, we
were able to repeat the randomization process and generate different
versions of the same image with the same object signal, such that a
new image was used for every trial. Also, since all images had the
same amplitude matrix, the objects could not be distinguished when
phase randomization was complete across all spatial frequencies. This
ensured that objects could not be identified based on the orientation/
spatial frequency profile of the randomized images.

Psychophysical experiments

We conducted two psychophysical experiments in order tomeasure
the detectability of the objects in the different conditions. Stimuli were
generated and displayed on a Dell OptiPlex 9010 desktop computer
driving an AMD Radeon HD 7570 graphics card to draw stimuli to a
60 × 33 cm Samsung SyncMaster SA950 Full HD 3D LED monitor,
refreshed at 120 Hz. Experiments took place in a darkened room and
the monitor was viewed from a distance of .64 m.

In the first experiment, we included only the ‘Low-pass’ and ‘High-
pass’ conditions, and measured the detectability of each object in these
two conditions as a function of the amount of phase randomization. At
the start of each session the participant chose the keys on a keyboard
they would use for their responses (‘smaller’ and ‘larger’ than a shoebox)
and after these responses the experiment commenced. Each trial began
with a central fixation marker (a small gray cross) that was displayed
on a black background for 250 ms, after which the stimulus image was
displayed on a black background for 500 ms before being replaced by
the fixation marker. Participants were given an unlimited amount of
time to respond. Following the participant's response, theywould receive
feedback on their decision (displayed as ‘correct’ in green, or ‘incorrect’ in
red) for 500 ms, and then the next trial would commence.

Each of the 12 participants completed 8 sessions of 15–20 minutes
each, consisting either of only ‘High-pass’ or only ‘Low-pass’ stimuli,
and including either the first 12 or the second 12 images in the set.
The order of sessions was counterbalanced across participants. Each
session included 12 randomly interleaved adaptive psychophysical
staircases (one for each of the 12 images) (Kontsevich and Tyler,
1999) consisting of 30 trials each. The adaptive staircase set the degree
of phase randomization on each trial in order to reliably estimate the de-
tection threshold of each image (the point at which the participant was
75% correct in identifyingwhether the object was smaller or larger than
a shoebox). At the completion of the 8 sessions, we had two estimates of
detection threshold of each image in both the ‘Low-pass’ and ‘High-pass’
conditions. Results and stimuli from the first psychophysics experiment
are included in the Supplementary Material.

The average detection thresholds across participants were used to
generate low and high-pass versions of each object thatwere of approx-
imately equal detectability. We found the maximum possible signal for
which the signal in the low and high-pass images were equal multiples
of the average detection threshold, and used these maximum matched
signal values to define the ‘Low-pass’ condition and the ‘High-pass’
condition of the MEG experiment. Images in the ‘Strong signal’ condi-
tion were defined by setting the signal in both the low and high spatial
frequency bands to these maximum matched values.

Finally, in the second psychophysical experiment, we calibrated
the signal level in the ‘Weak signal’ condition individually for each of
the nine participants who went on to complete the MEG experiment.
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