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This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear
models at the first (within-subject) level – e.g., dynamic causal models – and linear models at subsequent
(between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple
models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These
applications of Bayesian model reduction allow one to consider parametric random effects and make inferences
about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical
background to these procedures and illustrate their application using a worked example. This example uses a
simulatedmismatch negativity study of schizophrenia.We illustrate the robustness of Bayesianmodel reduction
to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its
recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we
consider the application of these empirical Bayesian procedures to classification and prediction.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

This paper introduces some potentially useful procedures for the
analysis of data from group studies using nonlinear models; for exam-
ple, dynamic causal models of neurophysiological timeseries. Its key
contribution is to finesse the problems that attend the inversion or
fitting of hierarchical models in a nonlinear setting. This is achieved by
using Bayesian model reduction that allows one to compute posterior
densities over model parameters, under new prior densities, without
explicitly inverting the model again. For example, one can invert a non-
linear (dynamic causal)model for each subject in a group and then eval-
uate the posterior density over group effects, using the posterior
densities over parameters from the single-subject inversions. This
application can be regarded as a generalisation of the standard summa-
ry statistic approach; however, instead of just using point estimators as
summaries of first (within-subject) level effects, one can take the full
posterior density to the second (between-subject) level. Furthermore,
this empirical Bayes procedure can be applied to any model inversion
scheme that furnishes posterior densities, which can be summarised
with a multivariate Gaussian distribution.

Bayesian model reduction refers to the Bayesian inversion and
comparison of models that are reduced (or restricted) forms of a full

(or parent) model. It can be applied whenever models can be specified
in terms of (reduced) prior densities. A common example would be
switching off a parameter in a full model by setting its prior mean and
variance to zero. The important aspect of Bayesian model reduction is
that models differ only in their priors, which means that the posterior
of a reduced model can be derived from the posterior of the full
model. In this paper, we will use Bayesian model reduction to evaluate
empirical priors to provide an empirical Bayesian model reduction
scheme.

Empirical Bayes refers to the Bayesian inversion or fitting of
hierarchical models. In hierarchical models, constraints on the posterior
density over model parameters at any given level are provided by the
level above. These constraints are called empirical priors because they
are informed by empirical data. In this paper, we will consider an
empirical Bayesian approach to any hierarchical model that can be
expressed in terms of an arbitrary (nonlinear) model at the first level
and a standard (parametric) empirical Bayesian (PEB) model at higher
levels (Efron and Morris, 1973; Kass and Steffey, 1989). In other
words, if the parameters of a nonlinear model of subject-specific data
are generated by adding random (Gaussian) effects to group means,
then the procedures of this paper can be applied. Crucially,
these procedures are very efficient because each hierarchical level of
the model requires only the posterior density over the parameters of
the level below. This means, one can invert deep hierarchical
models without having to revisit lower levels. This aspect of the
scheme rests on Bayesian model reduction, a procedure that we have
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previously described in the context of post hoc model optimisation and
discovery (Friston and Penny, 2011; Friston et al., 2011; Rosa et al.,
2012). Here, it is put to work in the context of empirical Bayes and,
as we will see later, evaluating predictive posterior densities for
classification.

We envisage empirical Bayesian model reduction will be applied
primarily to group Dynamic Causal Modelling (DCM) studies, where
subjects are assigned to groups according to factors such as behaviour,
diagnosis or genetics (e.g. Bernal-Casas et al., 2012). However, the
ideas presented here are not limited to DCM. They can be applied to
any nonlinear model and, interestingly, any inversion scheme at the
first (within-subject) level. This may be particularly important for
harnessing the computational investment of schemes that use
stochastic methods to evaluate first level posteriors (Sengupta et al., in
press). Bayesianmodel reduction resolves (or at least frames) a number
of issues in the inversion and interpretation of group DCM studies.
Consequently, we will take the opportunity to illustrate some of these
issues using a worked example. These include the problem of local
maxima when evaluating different models for Bayesian model
comparison—and the fundamental distinction between random
(between-subject) effects at the level of models and their parameters.
In contrast to our previous treatment of random model effects at the
between-subject level (Stephan et al., 2009), this paper considers
random parameter effects in the setting of parametric empirical Bayes.
We will also look at the fundamental difference between classical and
Bayesian inference about group effects. Finally, we will briefly consider
Bayesian classification of single subjects and touch on (leave-one-out)
cross validation.

This paper comprises four sections. The first reviews Bayesianmodel
reduction and introduces its application in a hierarchical or empirical
Bayesian setting. This section reviews the basic theory, which general-
ises conventional approaches to random effects modelling. The second
section applies the theory of the first to group studies, providing specific
expressions for the procedures used in subsequent sections. The third
section considers Bayesian model reduction using a worked example
based on a (simulated) DCM study of mismatch negativity. The focus
of this section is the utility of Bayesian model reduction in finessing
(e.g., local maxima) problems that are often encountered when
inverting nonlinear models. We will see that Bayesian model reduction
provides more robust estimates of posterior probabilities than fitting
models to the data separately, because it is less susceptible to violations
of (e.g., Laplace) assumptions. This application of Bayesian model
reduction provides Bayesian model averages that could be used for
classical inference with the standard summary statistic approach,
which we illustrate using canonical covariates analysis. However,
one can go further in terms of model comparison and classification
using empirical Bayesian model reduction. The last section revisits the
worked example to illustrate model comparison and averaging at the
second (between-subject) level. Our focus here is on inference about
group effects and classification using the posterior predictive density
afforded by empirical priors. The worked example was chosen to be
representative of real DCM studies—so that the procedures could be
illustrated in a pragmatic way. We will therefore refer to specific
(Matlab) routines that implement the procedures. These routines are
part of the academic SPM software available from http://www.fil.ion.
ucl.ac.uk/spm.

Methods and theory

Bayesian model reduction

Bayesian model reduction refers to the Bayesian inversion of
reduced models using only the posterior densities of a full model.
Bayesian model reduction provides an efficient way to invert large
numbers of (reduced) models, following the (usually computationally
expensive) inversion of a full model. Consider a generative model that

is specified in terms of its likelihood and priors. For example, models
with additive Gaussian noise have the following form:

lnp y; θjmð Þ ¼ lnp yjθ;mð Þ þ lnp θjmð Þ
p yjθ;mð Þ ¼ N Γ θð Þ;Σ θð Þð Þ

p θjmð Þ ¼ N η;Σð Þ
ð1Þ

Here, Γ(θ) is a possibly nonlinear mapping from the parameters
of a model to the predicted response y. Gaussian assumptions about
observation noise, with a parameterised covariance Σ(θ), define
the likelihood model that, when equipped with (Gaussian) priors,
specifies the generative model. The generative model provides a proba-
bilistic mapping from model parameters to observed data. Inference
corresponds to the inversion of this mapping; from data to parameters.
Usually, this inversion uses some form of approximate Bayesian
inference.

Approximate Bayesian inference can always be cast as maximising
the (negative) variational free energy with respect to the sufficient
statistics ~q of an approximate posterior qðθj~qÞ : see (Roweis and
Ghahramani, 1999; Friston, 2008) for a fuller discussion. In this paper,
a tilde (~) denotes the set of sufficient statistics of the prior ~p and
posterior ~q . Under the Laplace assumption (used throughout this
work), the sufficient statistics correspond to the mean and covariance
of each density. Using ~p ¼ ðη;ΣÞ for the sufficient statistics of the
prior, approximate Bayesian inference therefore corresponds to the
optimisation problem:

~q� ¼ argmaxq F ~p; ~qð Þ
F ~p; ~qð Þ ¼ Eq lnp yjθð Þ½ �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

accuracy

−DKL q θð j~qÞjjp θj~pð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
complexity

ð2Þ

Here, we have expressed the free energy in terms of accuracy (first
term) and complexity (second term), which is the Kullback–Leibler di-
vergence between the (approximate) posterior and prior. Usually, this
optimisation would proceed using a Fisher scoring scheme or related
gradient ascent: see (Friston et al., 2007) and the appendix for details.
After the negative free energy has been maximised the following
approximate equalities provide an estimate of the posterior density
over unknown model parameters and the log evidence or (marginal)
likelihood of the model itself:

q θj~q�� �
≈ p θjy; ~pð Þ

F ~p; ~q�
� �

≈ lnp yj~pð Þ ð3Þ

By expressing the free energy as a function of the sufficient statistics
of the prior and approximate posterior, it can be seen that the free ener-
gy depends on the prior, which in turn, specifies our beliefs about a
model.

Now, say we wanted to estimate the posterior under a new model
after eliminating some parameters to produce a reduced model. This is
commonplace in classical statistics and corresponds to evaluating the
treatment and residual sum of squares for a new contrast of parameters.
Exactly the same idea can be applied to Bayesian inference. This rests
upon the definition of a reduced model as a likelihood model with re-
duced priors. Consider Bayes rule replicated for reduced and full models
(mR, mF):

p θjy;mRð Þ ¼ p yjθ;mRð Þp θjmRð Þ
p yjmRð Þ

p θjy;mFð Þ ¼ p yjθ;mFð Þp θjmFð Þ
p yjmFð Þ

⇔ p θjy;mRð Þp yjmRð Þ ¼ p yjθ;mRð Þp θjmRð Þ
p θjy;mFð Þp yjmFð Þ¼ p yjθ;mFð Þp θjmFð Þ

ð4Þ
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