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Functional magnetic resonance imaging (fMRI) studies typically employ rapid, event-related designs for behavioral
reasons and for reasons associated with statistical efficiency. Efficiency is calculated from the precision of
the parameters (Betas) estimated from a General Linear Model (GLM) in which trial onsets are convolved
with a Hemodynamic Response Function (HRF). However, previous calculations of efficiency have ignored
likely variability in the neural response from trial to trial, for example due to attentional fluctuations, or different
stimuli across trials. Here we compare three GLMs in their efficiency for estimating average and individual Betas
across trials as a function of trial variability, scan noise and Stimulus Onset Asynchrony (SOA): “Least Squares All”
(LSA), “Least Squares Separate” (LSS) and “Least Squares Unitary” (LSU). Estimation of responses to individual trials
in particular is important for both functional connectivity using “Beta-series correlation” and “multi-voxel pattern
analysis” (MVPA). Our simulations show that the ratio of trial-to-trial variability to scan noise impacts both the
optimal SOA and optimal GLM, especially for short SOAs b 5 s: LSA is better when this ratio is high, whereas LSS
and LSU are better when the ratio is low. For MVPA, the consistency across voxels of trial variability and of scan
noise is also critical. These findings not only have important implications for design of experiments using
Beta-series regression andMVPA, but also statistical parametric mapping studies that seek only efficient estimation
of the mean response across trials.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Many fMRI experiments use rapid presentation of trials of different
types (conditions). Because the time between trial onsets (or Stimulus
Onset Asynchrony, SOA) is typically less than the duration of the BOLD
impulse response, the responses to successive trials overlap. Themajority
of fMRI analyses use linear convolution models like the General Linear
Model (GLM) to extract estimates of responses to different trial-types
(i.e., to deconvolve the fMRI response; Friston et al., 1998). The parame-
ters of the GLM, reflecting the mean response to each trial-type, or even
to each individual trial, are estimated by minimizing the squared error
across scans (where scans are typically acquired with repetition time, or
TR, of 1–2 s) between the timeseries recorded in each voxel and
the timeseries that is predicted, based on i) the known trial onsets,
ii) assumptions about the shape of the BOLD impulse response and
iii) assumptions about noise in the fMRI data.

Many papers have considered how to optimize the design of fMRI
experiments, in order to maximize statistical efficiency for a particular

contrast of trial-types (e.g., Dale, 1999; Friston et al., 1999; Josephs
and Henson, 1999). However, these papers have tended to consider
only the choice of SOA, the probability of occurrence of trials of each
type and themodeling of the BOLD response in terms of a Hemodynamic
Response Function (HRF) (Henson, 2015; Liu et al., 2001). Few studies
have considered the effects of variability in the amplitude of neural
activity evoked from trial to trial (though see Josephs and Henson,
1999; Duann et al., 2002; Mumford et al., 2012). Such variability across
trialsmight include systematic differences between the stimuli presented
on each trial (Davis et al., 2014). This is the type of variability, when
expressed differently across voxels, that is relevant tomulti-voxel pattern
analysis (MVPA), such as representational similarity analysis (RSA) (Mur
et al., 2009). However, trial-to-trial variability is also likely to include
other components such as random fluctuations in attention to stimuli,
or variations in endogenous (e.g., pre-stimulus) brain activity that modu-
lates stimulus-evoked responses (Becker et al., 2011; Birn, 2007; Fox et al.,
2006); variability that can occur even for replications of exactly the same
stimulus across trials. This is the type of variability utilized by trial-based
measures of functional connectivity between voxels (so-called “Beta-
series” regression, Rissman et al., 2004).

If one allows for variability in the response across trials of the same
type, then one has several options for how to estimate those responses
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within the GLM. Provided one has more scans than trials (i.e. the SOA
is longer than the TR), and provided the HRF is modeled with single
(canonical) shape (i.e., with one degree of freedom), one could model
each trial as a separate regressor in the GLM (Fig. 1A). Mumford et al.
(2012) called this approach “Least-Squares All” (LSA), in terms of the
GLM minimizing the squared error across all regressors. Turner
(2010) introduced an alternative called “Least-Squares Separate” (LSS;
Fig. 1B). This method actually estimates a separate GLM for each trial.
Within each GLM, the trial of interest (target trial) is modeled as one
regressor, and all the other (non-target) trials are collapsed into another
regressor. This approach has been promoted for designs with short
SOAs, when there is a high level of collinearity between BOLD responses
to successive trials (Mumford et al., 2012). For completeness, we also
consider the more typical GLM in which all trials of the same type are
collapsed into the same regressor, and call this model “Least-Squares
Unitary” (LSU). Though LSU models do not distinguish different trials
of the same type (and so trial variability is relegated to the GLM error
term), they are used to estimate the mean response for each trial-type,
and we show below that the precision of this estimate is also affected
by the ratio of trial variability to scan noise.

In the current study, we simulated the effects of different levels of
trial-to-trial variability, as well as scan-to-scan noise (i.e., noise), on
the ability to estimate responses to individual trials, across a range of
SOAs (assuming that neural activity evoked by each trial was brief –
i.e., less than 1 s – and locked to the trial onset, so that it canbe effectively
modeled as a delta function). More specifically, we compared the
relative efficiency of the three types of GLM – LSU, LSA and LSS – for
three distinct questions: 1) estimating the population or sample mean
of responses across trials, as relevant, for example, to univariate analysis
of a single voxel (e.g., statistical parametric mapping), 2) estimating the
response to each individual trial, as relevant, for example, to trial-based
measures of functional connectivity between voxels (Rissman et al.,
2004), and 3) estimating the pattern of responses across voxels for
each trial, as relevant to MVPA (e.g., Mumford et al., 2012). In short,
we show that different GLMs are optimal for different questions,
depending on the SOA and the ratio of trial variability to scan noise.

Methods

We simulated fMRI timeseries for a fixed scanning duration of
45 min (typical of fMRI experiments), sampled every TR = 1 s. We
modeled events by delta functions that were spaced with SOAs in
steps of 1 s from 2 s to 24 s, and convolved with SPM's (www.fil.ion.
ucl.ac.uk/spm) canonical HRF, scaled to have peak height of 1. The
scaling of the delta-functions (true parameters) for the first trial-type

(at a single voxel) was drawn from a Gaussian distribution with a
population mean of 3 and standard deviation (SD) that was one of 0,
0.5, 0.8, 1.6, or 3. Independent zero-mean Gaussian noise was then
added to each TR, with SD of 0.5, 0.8, 1.6 or 3,1 i.e., producing amplitude
SNRs of 6, 3.8, 1.9 or 1 respectively. (Note that, as our simulations below
show, the absolute values of these standard deviations matter little;
what matters is the ratio of trial variability relative to scan noise.)

For the simulations with two trial-types, the second trial-type had a
population mean of 5. The two trial-types were randomly intermixed.
For the simulations of two trial-types across two voxels, either the
same sample of parameter values was used for each voxel (coherent
trial variability), or different samples were drawn independently for
each voxel (incoherent trial variability). The GLM parameters (“Betas”,β) were estimated by least-squares fit of each of the GLMs in Fig. 1:

β̂OLS ¼ XTX
� �−1

XTy

where XT is the transpose of the GLM design matrix and y is a vector
of fMRI data for a single voxel. In extra simulations, we also examined a
L2-regularized estimator for LSA models (equivalent to ridge regression;
see also Mumford et al., 2012):

β̂RLS ¼ XTXþ λI
� �−1

XTy

where I is a scan-by-scan identity matrix and λ is the degree of regulari-
zation, as described in the Discussion section. A final constant term was
added to remove the mean BOLD response (given that the absolute
value of the BOLD signal is arbitrary). The precision of these parameter
estimates was estimated by repeating the data generation and model
fitting N = 10,000 times. This precision can be defined in several ways,
depending on the question, as detailed in the Results section. Note that
for regularized estimators, there is also a bias (whose trade-off
with efficiency depends on the degree of regularization), tending to
shrink the parameter estimates towards zero, but we do not consider
this bias here.

Note that we are only considering the accuracy of the parameter
estimates across multiple realizations (simulations, e.g., sessions,
participants, or experiments), e.g., for a “random-effects” group
analysis across participants.Wedo not consider the statistical significance
(e.g., T-values) for a single realization, e.g., for a “fixed effects” within-
participant analysis. The latter will also depend on the nature of the

A) LSA B) LSS C) LSU
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Fig. 1. Design matrices for (A) LSA (Least Squares-All), (B) LSS (Least Squares-Separate) and (C) LSU (Least Squares-Unitary). T(number) = Trial number.

1 Note that in the special case of zero trial variability and zero scan noise, all parameters
would be estimated perfectly, and so all GLMs are equivalent.
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