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23Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are
24commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector
25machine (SVM). Meanwhile, a deep neural network (DNN)withmultiple hidden layers has shown its ability to sys-
26tematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers,
27markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain
28resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of
29aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the
30DNNwould significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explic-
31itly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were ini-
32tialized via stacked autoencoder based pre-training to further improve the classification performance. Classification
33accuracywas systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm
34regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of
35anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an
36error rate of 14.2%was achieved by employing three hidden layers and 50 hidden nodeswith both L1-norm regular-
37ization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the
38trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant
39FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented
40sparse FC patterns implicated in SZ, which was quantified by using kurtosis/modularity measures and features from
41the higher hidden layer showed holistic/global FC patterns differentiating SZ from HC. Our proposed schemes and
42reported findings attained by using the DNN classifier and whole-brain FC data suggest that such approaches
43show improved ability to learn hidden patterns in brain imaging data, whichmay be useful for developing diagnostic
44tools for SZ and other neuropsychiatric disorders and identifying associated aberrant FC patterns.
45© 2015 Published by Elsevier Inc.

4647

48

49

NeuroImage xxx (2015) xxx–xxx
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50 Introduction

51 Resting-state functional MRI (rsfMRI) without a task paradigm has
52 been successfully employed to exploit neuronal underpinnings impli-
53 cated in neuropsychiatric disorders (Anand et al., 2005; Castellanos
54 et al., 2008; Li et al., 2002), including schizophrenia (SZ) (Greicius,
55 2008; Jafri et al., 2008; Liang et al., 2006; Liu et al., 2008; Mingoia
56 et al., 2012; Yu et al., 2012; Zhou et al., 2007). For example, Liu et al.
57 (2008) presented evidence of significantly altered functional connectiv-
58 ity (FC) pairs (i.e., locally connected networks), or disrupted “small-
59 world FC networks,” in the prefrontal, parietal, and temporal areas of
60 the brain in patients with SZ. In that study, the hypothesis on dysfunc-
61 tional network integration in SZ was supported by the lower strength
62 of the FC in the pairs of nodes and decreased synchronization of func-
63 tionally connected brain regions as well as the longer absolute path to
64 reach global functional networks (Bullmore et al., 1997, 1998; Calhoun
65 et al., 2009; Friston and Frith, 1995; Liu et al., 2008). In addition, Liang
66 et al. (2006) reported that aberrant SZ-associated FC patterns were
67 widely distributed throughout the entire brain (i.e., the FC levels of
68 approximately 89% of the observed pairs of nodes were decreased), as
69 opposed to showing a restricted pattern within only a few specific
70 brain regions.
71 Machine-learning algorithms have been successfully deployed in
72 the automated classification of altered FC patterns related to SZ
73 (Arbabshirani et al., 2013; Du et al., 2012; Shen et al., 2010; Tang
74 et al., 2012; Watanabe et al., 2014). In this regard, Du et al. (2012)
75 developed a method combining kernel principal component analysis
76 (PCA) and group independent component analysis (ICA) aimed at the
77 computer-aided diagnosis of SZ, achieving 98% accuracy by using fMRI
78 data acquired from an auditory oddball task paradigm. In addition,
79 Shen et al. (2010) introduced an unsupervised learning-based classifier
80 to discriminate SZ patients from HC subjects by applying a combination
81 of nonlinear dimensionality reduction and self-organized clustering
82 algorithms to rsfMRI data. The results of this analysis demonstrated
83 the highest discriminating power for FC patterns between the cerebel-
84 lum and the frontal cortex, with a classification accuracy of 92.3%. In
85 addition, the altered resting-state functional network connectivity
86 (FNC) among auditory, frontal-parietal, default-mode, visual, and
87 motor networks were gainfully adopted for classification of SZ patients
88 and 96% accuracy was achieved using k-nearest neighbors classifier
89 (Arbabshirani et al., 2013). A recent schizophrenia classification chal-
90 lenge demonstrated clearly, across a broad range of classification ap-
91 proaches, the value of rsfMRI data in capturing useful information
92 about this disease (Silva et al., 2014).
93 Of late, a strategy applying sparsity constraint to spatial patterns has
94 favorably been deployed in various scenarios of fMRI data analysis
95 directed toward extracting information from whole-brain FC patterns
96 (Grosenick et al., 2013; Kim et al., 2012; J.H. Lee et al., 2008;
97 Watanabe et al., 2014). This explicit control of sparsity to analyze fMRI
98 data also includes certain widely used ICA algorithms, such as the pop-
99 ular default algorithms of Infomax and FastICA, which jointly maximize
100 sparsity and independence (Calhoun et al., 2013). This sparsity control
101 has also been beneficial for brain decoding via fMRI data classification
102 (Ng and Abugharbieh, 2011). The sparsity constraint strategy is particu-
103 larly well-suited to fMRI data given the inherent high dimensionality
104 and intra-subject variability. Moreover, sparsity constraint using total
105 variation penalization (Michel et al., 2012) or anatomically-informed
106 spatiotemporally smooth sparse constraint (Ng et al., 2012) for
107 decoding of fMRI data can explicitly model intra/inter-subject variabili-
108 ty, thus resulting in superior performance compared with the least
109 absolute shrinkage and selection operator (LASSO)-based classifier
110 (Michel et al., 2012; Ng and Abugharbieh, 2011; Ng et al., 2012).
111 The sparsity constraint strategy was recently put into play with
112 rsfMRI data acquired from SZ patients and other neuropsychiatric
113 patients, facilitating the identification of aberrant FC-based attributes,
114 the extraction of distinct and sparse SZ-associated FC networks, and

115the subsequent application of these attributes and networks to auto-
116mated classification and diagnosis (Cao et al., 2014; Watanabe et al.,
1172014). For instance, Watanabe et al. (2014) discovered clinically infor-
118mative feature sets by using the same data set employed in the current
119study (seeMethods section) via a sparsity constraintwith a fused LASSO
120scheme for the conventional support vector machine (SVM) classifier.
121Altered FC patterns were prominent in the fronto-parietal networks,
122the default-mode networks (DMNs), and the cerebellar areas, and the
123corresponding accuracy was 71.9% (Watanabe et al., 2014).
124A deep neural network (DNN) with multiple hidden layers has
125achieved unprecedented classification performance relative to the
126SVM and other conventional models (e.g., the hidden Markov model)
127in various data sets such as image and speech data (Graves et al.,
1282013; Krizhevsky et al., 2012). This technical breakthrough was accom-
129plished by overcoming the limitations of traditional multilayer neural
130networks that are based on standard back-propagation algorithms and
131prone to over-fitting to the training data (Schmidhuber, 2014). More
132specifically, the distinct characteristics of DNN training encompass
133(1) unsupervised layer-wise pre-training followed by fine-tuning
134(Bengio et al., 2007), and (2) stochastic corruption of the input pattern
135or weight parameters via random zeroing, for example, a denoising
136autoencoder (Hinton et al., 2012; Vincent et al., 2010). Despite accumu-
137lating evidence showing the superiority of the DNN, previous applica-
138tions of DNN to neuroimaging data are limited to only a few studies
139(Brosch and Tam, 2013; Hjelm et al., 2014; Plis et al., 2014; Suk et al.,
1402013). Among the limited attempts to apply the DNN to neuroimaging
141data, the restricted Boltzmann machine as a building block for the
142DNN networkmodel has demonstrated its improved capacity to extract
143spatial and temporal information of fMRI data compared with conven-
144tional matrix factorization schemes, such as ICA and PCA algorithms
145(Hjelm et al., 2014). In addition, Suk et al. (2013) investigated the
146DNN training strategy by employing a stacked autoencoder (SAE) to dis-
147criminate Alzheimer's disease patients frommild cognitive impairment
148patients. This was done by using volumetric information derived from
149structural MRI data combined with cerebral glucose metabolism data
150obtained by positron emission tomography. More recently, Plis et al.
151(2014) provided a validation study of DNN applied to several types of
152neuroimaging data, providing evidence that DNN can learn important
153features such as disease severity (Plis et al., 2014).
154Whole-brain FC patterns from fMRI data have not yet been utilized
155as input patterns to demonstrate the efficacy of the DNN for classifica-
156tion of SZ or other neuropsychiatric disorders. Therefore, the objective
157of the present investigation was to enhance the classification accuracy
158of SZ patients vs. HC subjects by using the DNN classifier and whole-
159brain FC patterns estimated from rsfMRI data. The DNN has been
160applied to various data sets, such as image and speech data as well as
161neuroimaging data, with less than 1000 input dimensions (i.e., number
162of nodes in the input layer) (Graves et al., 2013; Krizhevsky et al.,
1632012). Compared with these data sets, a dimension of the whole-brain
164FC patterns can easily reach approximately 5000 when the whole brain
165is divided into 100 sub-regions. This high dimensionality would be
166confounded by a lack of straightforward interpretations of whole-brain
167FC patterns compared with those of speech, image data, and other
168neuroimaging modalities such as raw fMRI volumes and structural MRI
169data. Thus, training the DNN using complex and high-dimensional
170whole-brain FC patterns is inherently challenging. To this end, we evalu-
171ated our supposition that classification accuracy can be enhanced by
172(1) deploying sparsity control of DNN weight parameters and (2) sys-
173tematically initializing the weight parameters via a pre-training scheme.
174We defined a sparsity level of DNN weights as the ratio between
175a number of non-zero values of DNN weights and a total number
176of DNN weights (i.e., non-zero ratio). Then, to explicitly control the
177sparsity of the DNNweights, we developed an adaptive scheme to con-
178trol the non-zero ratios of the weights between two connected layers to
179target levels. We then hypothesized that the DNN using the proposed
180scheme would improve the classification accuracy of SZ patients and
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