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Adaptiveminimum variance beamformers are widely used analysis tools inMEG and EEG.When the target brain
activity presents in the form of spatially localized responses, the procedure usually involves two steps. First, po-
sitions and orientations of the sources of interest are determined. Second, the filter weights are calculated and
source time courses reconstructed. This last step is the object of the current study. Despite different approaches
utilized at the source localization stage, basic expressions for the weights have the same form, dictated by the
minimum variance condition. These classic expressions involve covariance matrix of the measured field, which
includes contributions from both the sources of interest and the noise background. We show analytically that
the same weights can alternatively be obtained, if the full field covariance is replaced with that of the noise,
provided the beamformer points to the true sources precisely. In practice, however, a certainmismatch is always
inevitable. We show that such mismatch results in partial suppression of the true sources if the traditional
weights are used. To avoid this effect, the “alternative” weights based on properly estimated noise covariance
should be applied at the second, source time course reconstruction step. We demonstrate mathematically and
using simulated and real data that in many situations the alternative weights provide significantly better time
course reconstruction quality than the traditional ones. In particular, they a) improve source-level SNR and
yieldmore accurately reconstructedwaveforms; b) providemore accurate estimates of inter-source correlations;
and c) reduce the adverse influence of the source correlations on the performance of single-source beamformers,
which are usedmost often. Importantly, the alternativeweights come at no additional computational cost, as the
structure of the expressions remains the same.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Minimum variance adaptive spatial filters or beamformers (Van
Veen et al., 1997; Robinson and Vrba, 1999; Sekihara and
Nagarajan, 2008; Greenblatt et al., 2005; Huang et al., 2004;
Herdman and Cheyne, 2009) have been widely used for
bioelectromagnetic source reconstruction in magnetoencephalogra-
phy (MEG) and electroencephalography (EEG). Both technologies
make it possible to register electromagnetic fields generated by syn-
chronous post-synaptic electric currents in populations of neurons
(Hamalainen et al., 1993; Herdman and Cheyne, 2009), using an
array of sensors positioned outside the brain. Beamformers allow re-
construction of these neuronal activations based on the MEG/EEG
measurements. In principle, such reconstruction can be achieved

using a number of methods, each one involving certain assumptions
and approximations (see Baillet et al., 2001; Mosher et al., 2003;
Greenblatt et al., 2005 for a review). In most cases, it is assumed
that electromagnetic field of the brain is produced by a large number
of elementary sources, usually approximated by point current di-
poles, although other source types may be considered (Limpiti
et al., 2006; Jerbi et al., 2002). In the beamformer approach it is fur-
ther assumed that among all the brain sources there is a relatively
small number of those that determine a “signal” part of themeasured
field. These sources are often referred to as “active”, “task-related”
sources, “sources of interest”, etc. All other brain sources are collec-
tively regarded as background often called “brain noise”. This
model is justified in many practical situations, especially when
studying the task- or stimuli-driven components of the overall
brain activity. The goal of the beamformer analysis is to locate the
above mentioned sources in the brain, and then reconstruct their
time courses by applying a spatial filtering technique. Accordingly,
a typical procedure involves two steps. First, locations and orienta-
tions of the sources of interest are determined by searching the
brain volume (or more precisely, the source parameter space)
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using localizer functions (or simply “localizers”). Second, the filter
weights of the beamformer pointing to the found sources are calcu-
lated. Both steps are closely related, because incorrect source locali-
zationmay result in the waveforms reconstructed on the second step
become distorted or even meaningless. The first step is much more
complicated than the second, and this is where the existing
beamforming algorithms differ. For example, localizer functions
based on different assumptions have been proposed, and the search
procedure itself can be implemented in a number of ways. On the
contrary, irrespective of the approach applied at the localization
step, the same (or mathematically equivalent) expressions for the spa-
tial filter weights are used once the source parameters were deter-
mined (step two). These classic expressions have been known for
decades in the radar field (Frost, 1972); works by Robinson and
Rose, 1992 and Van Veen et al., 1997 were likely the first ones
where this approach was applied to neuroimaging. The expressions
follow directly from the “minimum variance” principle and certain
linear constraints imposed on the weights. The weights turn out to
be fully determined by a) the lead field(s) of the target
source(s) and b) the covariance matrix of the field measured by the
sensor array when the sources of interest were active. We call it
“full” covariance from here on, because it includes contributions
from both the sources of interest (the signal) and the noise. The
term “noise” here refers to the part of the measured field which is
not produced by the target sources. It includes environmental, in-
strumental noise and the brain noise as well. The noise covariance
matrix is not needed for the spatial filter construction, but in most
cases participates in the localizer functions.

In this paper, we were primarily concerned with the second step of
the beamformer approach. We showed analytically that the traditional
expressions for the weights can be improved by replacing the full co-
variance matrix with the noise covariance, and demonstrated this in
simulations and using humanMEG data. Specifically, both the tradition-
al and new expressions yield identical results provided the source pa-
rameters were determined precisely, while the noise-based ones yield
more accurate reconstructions in the presence of modeling, source lo-
calization and other errors. At the same time, the localizers applied at
the first step of the beamformer analysis should still be constructed
using the traditional weights based on the full covariance.

Methods

Throughout the paper, vectors and matrices are specified in lower-
and uppercase bold letters, respectively (i.e. a and A), scalars, including
components of vectors andmatrices— in regular letters (i.e. t, P, Aij). The
symbol “^” denotes an estimate of some quantity, as opposed to its true
value. Subscript “0” added to a symbol means that corresponding quan-
tity is calculated when the true source parameters are substituted. For
convenience, we used notation adopted in Moiseev et al. (2011),
Moiseev and Herdman, (2013), as some of the results are used in this
study.

EEG/MEG forward model

Assume that EEG or MEG signals are recorded by an array of M sen-
sors. Let b(t) denote an M-dimensional column vector of sensor read-
ings at time t, and suppose that b(t) is produced by n b M sources of
interest si(θi, t), i = 1,…, n, and noise ν(t):
b tð Þ ¼

Xn

i¼1

si θio; t� �
hi θi0� �

þ ν tð Þ: ð1Þ

In Eq. (1), si(θi, t) is the instantaneous amplitude of the i-th source;
vector θi denotes a set of parameters defining the source. This set de-
pends on the source type. Without loss of generality the sources are

assumed to be point current dipoles fromhere on. In this case θi consists
of a source position ri and a unit orientation vector ui: θi = {ri, ui}. M-
dimensional column vectors hi(θi), ν(t) define the source lead fields
(forward solutions) and the noise measured by the array, respectively.
Specifically, ν describes that part of the measured field b which is not
produced by the sources of interest si and includes environmental, in-
strumental noise as well as fields generated by other brain sources (the
brain noise). Further on, we use the term “sources” when referring to
the sources of interest, understanding that all other brain activations
are accounted for in the noise field ν. Requirement n b M (so called
“low rank” assumption) is necessary to derive the weights expressions
(see Sekihara and Nagarajan, 2008). Both the true source parametersθ0i and the true source forward solution h0

i do not change with time.
si(θ0i , t) and ν(t) are assumed to be uncorrelated zero-mean stationary
random processes: 〈si(θ0i , t)〉 = 0, 〈ν(t)〉 = 0, 〈si(θ0i , t)ν〉 = 0, where
the angle brackets denote statistical averaging.

Minimum variance spatial filter solution

In the linear spatial filter approach, an estimate ŝ i of the unknown
amplitude si(θ0i , t) is sought in the form of a weighted sum of the sensor
array readings:

ŝi Θ; tð Þ ¼ ∑M
m¼1w

i
m Θð Þbm tð Þ ¼ wi Θð ÞTb tð Þ ð2Þ

where M-dimensional column vector wi defines the beamformer
weights for the source “i”: wi = {w1

i , …, wM
i }T; superscript “T” denotes

transposition. Vectors wi depend on parameters Θ = {θ1, …, θn} of the
“target” sources the beamformer points to, but do not change with
time. For adaptive minimum variance beamformers (Frost, 1972, Van
Veen et al., 1997; Robinson and Vrba, 1999; Sekihara et al., 2004;
Sekihara and Nagarajan, 2008), theweightswi are found byminimizing
average total power of sources P, reconstructed using Eq. (2). The power

is defined as P ¼ ∑n
i¼1bŝ

2
i N ¼ ∑n

i¼1w
iThbbT iwi ¼ trðWTRWÞ . Here

R = 〈bbT〉 is (M × M) covariance matrix of the field, measured by the
sensor array, which we also call the full covariance. Matrix W has the
weight vectors of individual sources wi as its columns, W =
{w1,…,wn}, and has dimensions (M× n). Minimization of power is per-
formed subject to unit gain constraints: wiThi = 1, i = 1,…, n, where hi

denote the forward solutions of the sources the beamformer is steered
to. Unit gain constraints ensure that minimization of P does not reduce
the signals received from the sources of interest. Additionally, if n N 1,
the weight vector wi of source i should be orthogonal to forward solu-
tions of all other targets: wiThj = 0, j ≠ i, i, j = 1, …, n (zero-gain con-
straints). Zero-gain constraints prevent sources j ≠ i from contributing
to the reconstructed time course s ̂ iðΘ; tÞ. Both unit and zero gain con-
straints are combined by a single matrix equation WTH = In, where
lead field matrix H has target forward solutions hi as its columns, H =
{h1,…, hn}, and In is n-dimensional identity matrix. A well-known clas-
sic formula for weights W minimizing the total power P subject to the
above constraints is (Frost, 1972; Sekihara and Nagarajan, 2008; Van
Veen et al., 1997):

W ¼ R−1H HTR−1H
� �−1

: ð3Þ

Eq. (3) or its sub-cases is commonly used by all popular minimum
variance filters, including single-source scalar and vector beamformers
(Robinson and Vrba, 1999; Van Veen et al., 1997; Sekihara and
Nagarajan, 2008; Huang et al., 2004), evoked beamformers (Robinson,
2004; Cheyne et al., 2007), as well as multi-source versions of those
(Brookes et al., 2007; Dalal et al., 2006; Diwakar et al., 2011; Moiseev
et al., 2011, Moiseev and Herdman, 2013). Sometimes, additional nor-
malizations are applied to the weights themselves, or to the lead fields
in Eq. (3), or to both (see Sekihara and Nagarajan, 2008 for examples).
Such normalizations neither change the structure of the expression
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