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Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study themacroscop-
ic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing
the full-brain fiber configuration that best explains the measured data, based on a generative signal model. In
this work, we incorporate a multi-shell multi-tissue model based on spherical convolution, into a global
tractography framework,which allows to dealwith partial volume effects. The required tissue response functions
can be estimated from and hence calibrated to the data. The resulting track reconstruction is quantitatively relat-
ed to the apparent fiber density in the data. In addition, the fiber orientation distribution forwhitematter and the
volume fractions of gray matter and cerebrospinal fluid are produced as ancillary results. Validation results on
simulated data demonstrate that this data-driven approach improves over state-of-the-art streamline and global
tracking methods, particularly in the valid connection rate. Results in human brain data correspond to known
white matter anatomy and show improvedmodeling of partial voluming. This work is an important step toward
detecting and quantifying white matter changes and connectivity in healthy subjects and patients.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Diffusion-weighted imaging (DWI) (Le Bihan et al., 1986) and
tractography (Mori and van Zijl, 2002) provide a unique, non-invasive
technique to study the macroscopic structure and connectivity of the
white matter in the human brain in vivo (the human connectome)
(Tournier et al., 2011;Dell'Acqua andCatani, 2012). Not only ismapping
the connectome one of the biggest challenges in modern neuroscience,
a detailed understanding of its structure and organizationmay also help
the neuroscientific community to gain insight in a number of important
disease processes (Sporns et al., 2005; Jbabdi and Johansen-Berg, 2011).
Therefore, diffusion-weighted imaging and tractography are key ele-
ments in recent, large-scale efforts for mapping the human brain (Van
Essen et al., 2013; Assaf et al., 2013). Yet, besides large datasets, im-
proved analysis pipelines are needed before connectomics may reliably

answer those questions, first and foremost improved microstructural
modeling and tractography (Jbabdi and Johansen-Berg, 2011).

While it has been recognized early on that diffusion is sensitive to
the underlying fiber geometry (Beaulieu, 2002), understanding the pre-
cise link between both is essential for accurate and robust interpretation
of the measured data (Jbabdi and Johansen-Berg, 2011; Mangin et al.,
2013). Hence, considerable effort has gone to modeling this so-called
local inverse problem, beyond the (Gaussian) diffusion tensor model
(Basser et al., 1994). On the one hand, a growing class of methods
aims at modeling the biophysical process directly, hence deriving mi-
crostructural properties such as axon diameter, neurite density, etc.
(Panagiotaki et al., 2012). On the other hand, data-driven approaches
have been developed, which aim at deriving the fiber geometry with
as little prior assumptions about its physical properties as possible. Ar-
guably the most popular among these are spherical deconvolution
(SD) techniques (Tournier et al., 2007; Descoteaux et al., 2009), which
reconstruct the fiber orientation distribution function (fODF) based on
a fiber response function that may be estimated from the data itself.
However, despite the progress in this area, the local inverse problem
is inherently incomplete, as the symmetric nature of the diffusion
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profile cannot discriminate crossing and fanning fiber geometries on a
larger scale (Jbabdi and Johansen-Berg, 2011).

Because of the aforementioned limitations of local modeling,
Mangin et al. (2013) recently advocated “a shift toward a global inverse
problem perspective, namely the global reconstruction of the geometry
of the complete white matter”. Indeed, accounting for the spatial conti-
nuity of neural fibers may help in recovering locally ambiguous config-
urations and improve the robustness of the model fitting. Such is the
motivation behind a growing class of spatially regularized fODF recon-
struction methods (Goh et al., 2009; Reisert and Kiselev, 2011; Zhou
et al., 2014). Global tractography (GT) methods (Poupon et al., 2000;
Mangin et al., 2002; Kreher et al., 2008; Fillard et al., 2009; Reisert
et al., 2011, 2014) go even further and aim at reconstructing the entire
fiber configuration that best explains the measured diffusion data.
Moreover, they address the ill-posed nature of diffusion tractography
at the same time, i.e., they aremore robust to noise and local reconstruc-
tion errors than streamline tracking (Mangin et al., 2013).

Yet, current GT methods rely on specific microstructural models
with fixed parameters, which may not always be adapted to the type
of data available. Kreher et al. (2008) and Fillard et al. (2009) model
the fiber response as an axially symmetric diffusion tensor. Reisert
et al. (2011) use the stick model for the intra-axonal compartment
(Behrens et al., 2003), which they have recently extended with a sepa-
rate extra-axonal compartment, modeled by a diffusion tensor (Reisert
et al., 2014). Besides having to be tuned to the data at hand, these
models are typically defined for white matter and therefore fail to take
partial volume effects from adjacent tissues into account.

In this paper, we introduce a multi-shell spherical harmonic re-
sponse function,measured from the data, into the generativemodel de-
fined as part of the global tractography method of Reisert et al. (2011).
In addition, we adopt the multi-tissue model of Jeurissen et al., (2014)
to differentiate betweenwhitematter (WM), graymatter (GM), and ce-
rebrospinal fluid (CSF) compartments. As such, our approach explicitly
accounts for partial volume effects and does not require a white matter
mask in the reconstruction.

Methods

Global tractography in the spherical harmonics basis

Particle-based global tractographymethods typicallymodel theneu-
ral fiber trajectories as chains of particles (line segments), each charac-
terized by their position xi

! and orientation n!i (Kreher et al., 2008;
Fillard et al., 2009; Reisert et al., 2011). The fiber modelM then consists
of the set of all segments fXi ¼ ð x!i; n

!
iÞg and a set of connections be-

tween their endpoints. Ultimately, we wish to maximize the posterior
probability of M given the data D, which, according to Bayes' rule and
assuming a Gibbs distribution at temperature T, can be written as

P M Djð Þ ∝ P D Mjð Þ P Mð Þ ð1Þ

¼ e−Edata M;Dð Þ=T e−Econ Mð Þ=T : ð2Þ

As such, the problem becomes finding the global minimum of
E(M) = Edata(M, D) + Econ(M). The data energy Edata relates to the
data likelihood and is defined as the mean squared error between the
measured data D and the predicted data D′, simulated from the particle
configurationM using a generative model. The connection energy Econ
relates to the model prior and promotes connectivity and smoothness
of the reconstructed tracks.

Generative model

The central hypothesis in this work is that, for white matter, each
segment has a fixed and equal contribution to the predicted data D′WM,
in the form of a fiber response kernel Kb(θ). Kb is a spherical function

depending only on the elevation angle θ and the b-value, that models
the expected diffusion signal for a single fiber direction along the z-
axis. As such,we can simulate thewhitematter signal for gradient direc-
tion ð g!; bÞ by orienting the z-axis of this kernel along all segments and
integrating over all segments in a voxel r!, i.e.,

D0
WM r!; g!; b
� �

¼
X

x!i; n
!

i

� �
x!i∈N r!

� �
w r!− x!i

��� ���� �
Kb arccos n!i � g!

� �� �
: ð3Þ

In this equation, Nð r!Þ denotes the voxel neighborhood and w(⋅) is
some spatial weighting function. In the most simple case, w is a
block function the size of one voxel. Cast into the basis of real, sym-
metric spherical harmonics (SH) (Descoteaux et al., 2009), the ker-
nel reorientation can be described as a convolution with a SH Dirac
delta function δn→i

along the segment direction n!i. As such, the pre-
dicted white matter signal becomes

D0
WM r!; g!; b
� �

¼
X

x!i; n
!

i

� �
x!i∈N r!

� �
w r!− x!i

��� ���� �
Kb � δn→i

� ��
g!� ð4Þ

¼ Kb �
X

x!i; n
!

i

� �
x!i∈N r!

� �
w r!− x!i

��� ���� �
δn→i

g!
� �

ð5Þ

¼ Kb �Ψ r!; g!
� �

; ð6Þ

where � is the spherical convolution operator and Ψð r!; u!Þ is an SH
orientation distribution function (ODF) of the segments in voxel r!.
Hence, the white matter signal is simulated by converting the seg-
ment configuration to a fiber ODF and calculating the convolution
with a kernel Kb, as depicted in Fig. 1.

In addition, similar to Jeurissen et al. (2014), we introduce one or
more isotropic kernels cj(b) that account for partial volume contamina-
tion of other tissue types. Typically, we will use these to model cerebro-
spinal fluid (CSF) and gray matter (GM), but it should be noted that
these can be used to model any isotropic signal component. Hence our
complete model becomes

D0 r!; g!; b
� �

¼ Kb �Ψ r!; g!
� �

þ
X
j

c j bð Þ f j r!
� �

; ð7Þ

where f jð r!Þ is the fraction of isotropic component j in voxel r!.

Data likelihood and priors

Assuming a Gaussian data likelihood, the data energy is defined as

Edata M;Dð Þ ¼ κ
D−D0�� ��2
Q K2

0

þ μ Np

 !
; ð8Þ

in which κ is a weighting factor. In the first term, Q is the number of ac-
quired DWI volumes and K0 is the amplitude of the b=0WM response
function. Hence, this term expresses themean squared error of the data
relative to the kernel. Because K0 is proportional to the intensity of the
DWI data, this scaling assures that the reconstruction can handle differ-
ent acquisition protocols and gradient schemes without needing to
adapt the parameters. The second term imposes a L1-prior on the total
number of particles Np in the model, each of which has an associated
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