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are, however, various common examples in which global exchangeability can be violated, including paired tests,
tests that involve repeated measurements, tests in which subjects are relatives (members of pedigrees) — any
dataset with known dependence among observations. In these cases, some permutations, if performed, would
create data that would not possess the original dependence structure, and thus, should not be used to construct
the reference (null) distribution. To allow permutation inference in such cases, we test the null hypothesis using
only a subset of all otherwise possible permutations, i.e., using only the rearrangements of the data that respect
exchangeability, thus retaining the original joint distribution unaltered. In a previous study, we defined ex-
changeability for blocks of data, as opposed to each datum individually, then allowing permutations to happen
within block, or the blocks as a whole to be permuted. Here we extend that notion to allow blocks to be nested,
in a hierarchical, multi-level definition. We do not explicitly model the degree of dependence between observa-
tions, only the lack of independence; the dependence is implicitly accounted for by the hierarchy and by the per-
mutation scheme. The strategy is compatible with heteroscedasticity and variance groups, and can be used with
permutations, sign flippings, or both combined. We evaluate the method for various dependence structures,
apply it to real data from the Human Connectome Project (HCP) as an example application, show that false pos-
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itives can be avoided in such cases, and provide a software implementation of the proposed approach.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Introduction

In the context of hypothesis testing using the general linear model
(cm) (Scheffé, 1959; Searle, 1971), permutation tests can provide
exact or approximately exact control of false positives, and allow the
use of various non-standard statistics, all under weak and reasonable
assumptions, mainly that the data are exchangeable under the null hy-
pothesis, that is, that the joint distribution of the error terms remains
unaltered after permutation. Permutation tests that compare, for in-
stance, groups of subjects, are of great value for neuroimaging
(Holmes et al., 1996; Nichols and Holmes, 2002), and in Winkler et al.
(2014), extensions were presented to more broadly allow tests in the
form of a cum, and also to account for certain types of well structured
non-independence between observations, which ordinarily would pre-
clude the use of permutation methods. This was accomplished by
redefining the basic exchangeable unit from each individual datum to
blocks of data, i.e., rather than asserting exchangeability across all obser-
vations of a given experiment, blocks of exchangeable units are defined;
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these exchangeability blocks (EBs) can be rearranged as a whole (whole-
block exchangeability), or the observations within block can be shuffled
among themselves (within-block exchangeability), using either permu-
tations, sign flippings, or permutations combined with sign flippings.
In the same work, the G-statistic, a generalisation over various com-
monly used statistics, including the F-statistic, was proposed. G is robust
to known heteroscedasticity (i.e., the situation in which the variances
are known to be not equal across all observations, which can be then
classified into variance groups) and can be used with the GLm, ensuring
that pivotality! is preserved, a crucial requisite for exact control over
familywise error rate (FweRr) using the distribution of the most extreme
statistic (Westfall and Young, 1993), as needed in many neuroimaging
studies. Indeed, the use of ess allows for variances to be heterogeneous,
provided that the groups of observations sharing the same variance
(i.e., variance groups, vGs) (Woolrich et al., 2004) are compatible with
the eBs; specifically, for within-block exchangeability the vGs must coin-
cide with the blocks, and for whole-block exchangeability they must
include one or more observations from each block in a consistent order.

T A pivotal statistic has a sampling distribution that does not depend on unknown
parameters.
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This arrangement, using a statistic that is robust to heteroscedasticity,
the use of variance groups, and the imposition of restrictions on ex-
changeability through the use of EBs, allows inference on various designs
that, otherwise, would be much more difficult to do non-parametrically.
These designs include paired tests, longitudinal designs, and other com-
mon tests that involve repeated measurements. However, certain study
designs, despite exhibiting well-structured dependence between obser-
vations, still cannot be accommodated in the above framework. This
occurs when the overall covariance structure is known, but its exact
magnitude is not. An example occurs when multiple measurements
per subject are performed in more than one session, with more than
one measurement per session: the measurements within session may
be exchangeable, but not across sessions. Another example is for studies
using siblings, such as designs using discordant sib-pairs (in which only
one sibling is affected by a given disorder), or using twins: permutations
that disrupt the constitution of any sibship cannot be performed, as this
would violate exchangeability.

Studies such as these are relatively common, notably those that in-
volve siblings. However, whereas in classical twin designs the central
objective is to quantify the fraction of the variation in a measurement
(trait) that can be explained by the familial relationship between sub-
jects after potential confounds have been taken into account, a quantity
known as heritability, here the concern is with a general linear model,
and the objective is to test the influence of explanatory variables
on the observed data. In other words, the interest lies on the rela-
tionship between the covariates and the main trait, while the non-
independence between observations, which is a feature of interest in a
heritability study, is here a form of nuisance that imposes restrictions
on exchangeability for permutation inference for the cLm.

Rather than inadvertently breaking these restrictions, here we pro-
pose to test the null hypothesis using a subset of all otherwise possible
permutations, only allowing the rearrangements that respect exchange-
ability, thus retaining original joint distribution unaltered.? As in our
previous work, we treat observations or entire blocks of data as weakly
exchangeable, but here we further extend the definition of eBs to allow
more complex designs to be addressed. This is accomplished through
the use of multi-level exchangeability blocks, in which levels consist of
nested blocks; for each such block the state of within- or whole-block
exchangeability can be specified. The blocks are defined hierarchically,
based on information about the dependence within data, but not requir-
ing the modelling of the actual dependency. Even though the possibility
of using nested blocks was anticipated in Winkler et al. (2014) (“Whole-
block and within-block can be mixed with each other in various levels of
increasing complexity”, page 386), nothing further was studied or pre-
sented at the time. Here we provide a comprehensive description of
the approach, investigate its performance, its power, and present an ap-
plied example using the data structure of the ongoing Human
Connectome Project (Hcp). In the Appendix A, we present an implemen-
tation strategy.

Theory
Terminology

When contrasting the method described in this article with simple
data rearrangement, various terms could be adopted: single-level vs.
multi-level block shuffling, emphasising the levels of relationship be-
tween observations; unrestricted vs. restricted, emphasising the imposi-
tion of restrictions on how the data are allowed to be rearranged at each
shuffling; free vs. tree shuffling, emphasising the tree-like structure of
the relationships between observations that allow shuffling. All these
terms have equivalent meaning in the context of this article, and are

2 Exchangeability with respect to a subset of all possible permutations is termed weak
exchangeability (Good, 2005). For conciseness, we will use the solitary term “exchange-
ability”, while making clear the subsets of permutations for which this is valid.

used interchangeably throughout. The generic terms shuffling and
rearrangement are used when the distinction between permutations,
sign flippings or permutations with sign flippings is not relevant.

Notation

We consider a Gum that can be expressed as Y = My + ¢, where Y is
the N x 1 vector of observed data, M is the full-rank N x r design matrix
that includes explanatory variables (i.e., effects of interest and possibly
nuisance effects), ¢ is the r x 1 vector of r regression coefficients, and
e is the N x 1 vector of random errors. Estimates for the ¢ can be com-

puted by ordinary least squares, i.e., = M"Y, where the superscript
(1) denotes a pseudo-inverse. One generally wants to test the null hy-
pothesis that a given combination (contrast) of the elements in ¢ equals
to zero, that is, Hp : C'yy = 0, where Cis a r x s full-rank matrix of s con-
trasts, 1 < s <r. The commonly used F statistic can be computed as usual
and used to test the null hypothesis. When s = 1, the Student's ¢ statistic

can be computed as t = sign (([:) V'E. A p-value for the statistic is calcu-

lated by means of shuffling the data, the model, the residuals, or variants
of these (Winkler et al., 2014, Table 2). In any of these cases, to allow re-
arrangements of the data, some assumptions need to be made: either of
exchangeable errors (EE) or of independent and symmetric errors (1sE). The
first allows permutations, the second sign flippings; if both are available
for a given model, permutations and sign flippings can be performed to-
gether. These rearrangements are represented by permutation and/or
sign flipping matrices P, and the set of all such matrices allowed for a
given design is denoted as P.

At its simplest, the ess for within- or whole-block exchangeability
can be identified or represented by a set of indices {1,2...,B}, one for
each of the B blocks. A vector of size N x 1, can be used to indicate to
which eB each observation from Y belongs (Fig. 1, left); an extra flag is
passed to the shuffling algorithm (such as the randomise algorithm)
to indicate whether the rearrangements of the data should happen as
within- or as whole-block. While this notation probably covers the ma-
jority of the most common study designs, it allows only within- or
whole-block, but not both simultaneously; in other words, if in a study
the observations can be permuted within block, and the blocks as a
whole can also be permuted, such notation does not convey all possibil-
ities for reorganising the data while preserving their joint distribution
unaltered, and algorithms would perform fewer shufflings than those
that are effectively allowed.

This can be addressed by extending the notation from a single column
to a multi-column array, allowing nested Ess to be defined, such that
blocks can contain sub-blocks, in a hierarchical fashion, and where each
column represents a level; we use the leftward columns to indicate
higher, and rightward to indicate lower levels. More columns alone, how-
ever, are not sufficient, because at each level, shufflings of observations or
of sub-blocks can be allowed within-block, or the blocks at that level can
be shuffled as a whole. Hence to discriminate between one type or the
other, we use negative indices to indicate that the exchangeable units at
the level immediately below should not be permuted, and positive indices
indicate that shuffling of these units is allowed (Fig. 1, right). The ex-
changeable units can be sub-blocks, which can contain yet other sub-
blocks, or observations if the next level immediately below is the last.

These two notations, i.e., using single- or multi-column indices, do
not represent mathematical entities, and are not meant to be used for al-
gebraic manipulation; rather, these notations are shorthand methods to
represent structured relationships between observations. The covari-
ance structure prevents unrestricted shuffling from being considered,
but it often permits shufflings to happen in a certain orderly manner
that preserves the joint distribution of the data. These notations are to
be used by the algorithm that performs the test to construct the permu-
tation and/or sign flipping matrices, which then can be used to effective-
ly disarrange the model to construct the distribution of the statistic
under the null hypothesis.
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