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20We introduce a mass-univariate framework for the analysis of whole-brain structural trajectories using longitu-
21dinal Voxel-Based Morphometry data and Bayesian inference. Our approach to developmental and aging
22longitudinal studies characterizes heterogeneous structural growth/decline between and within groups. In
23particular, we propose a probabilistic generative model that parameterizes individual and ensemble average
24changes in brain structure using linear mixed-effects models of age and subject-specific covariates. Model inver-
25sion uses ExpectationMaximization (EM),while voxelwise (empirical) priors on the size of individual differences
26are estimated from the data. Bayesian inference on individual and group trajectories is realized using Posterior
27Probability Maps (PPM). In addition to parameter inference, the framework affords comparisons of models
28with varying combinations of model order for fixed and random effects using model evidence. We validate the
29model in simulations and real MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project.
30We further demonstrate how subject specific characteristics contribute to individual differences in longitudinal
31volume changes in healthy subjects, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD).

32 © 2015 Published by Elsevier Inc.
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37 Introduction

38 Magnetic Resonance Imaging (MRI) and computational morphome-
39 try have become important tools for in-vivo analysis of changes in
40 healthy and pathological brain development and aging (Frisoni et al.,
41 2010; Fjell andWalhovd, 2010). One of themost exciting research ques-
42 tions is the nature of variability in aging brain structure (Raz et al., 2005,
43 2010; Raz and Rodrigue, 2006) and function (Pudas et al., 2013; Grady,
44 2012) observed across individuals. Most aging studies apply cross-
45 sectional designs, providing estimates of population average, age-
46 related, differences via pooling within cohorts (Ziegler et al., 2012a).
47 However, exploring the large heterogeneity of true within-subject
48 brain changes necessarily requires repeated measures and longitudinal
49 designs (Raz and Lindenberger, 2011).
50 Longitudinal assessments offer significant advantages over cross-
51 sectional studies (for an introduction see e.g. Fitzmaurice et al., 2008).

52A longitudinal study is more powerful for a fixed number of subjects.
53It permits separation of within- and between-subject variability, and
54helps to ameliorate confounds. Another important advantage is that in
55addition to providing estimates of population average brain changes it
56enables a characterization of systematic differences in longitudinal tra-
57jectories among individuals. This allows researchers to identify adverse
58aswell as protective factors thatmay influence healthy and pathological
59changes in brain anatomy and function over time (see e.g. Taki et al.,
602013; Thambisetty et al., 2012; Smith et al., 2010; Debette et al., 2011;
61den Heijer et al., 2012). Moreover, individual subjects' trajectories are
62promising biomarkers for early stage diagnosis (Chetelat and Baron,
632003), tracking of disease progression (Fonteijn et al., 2012; Jedynak
64et al., 2012; Sabuncu et al., 2014; Donohue et al., 2014; Young et al.,
652014) and monitoring of potential treatments (Douaud et al., 2013).
66Crucially, longitudinal MR-based morphometry is prone to artifacts
67due to scanner inhomogeneities, registration inconsistency, and subtle
68scanner-positioning or hydration-related deformations of the brains
69(Schnaudigel et al., 2010; Littmann et al., 2006; Kempton et al., 2009).
70Sophisticated within-subject registration pipelines have been intro-
71duced recently to parameterize structural changes in an unbiased fash-
72ion (Ashburner and Ridgway, 2013; Leung et al., 2012; Lorenzi and
73Pennec, 2013; Holland et al., 2011; Reuter et al., 2010, 2012).
74An essential difference between longitudinal and cross-sectional
75analysis lies in the modeling assumptions about each individual. With
76a single observation per subject one has to assume the process of
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77 interest is identical across subjects (using fixed-effects assumptions). In
78 contrast, longitudinal designs allow one to parameterize individual
79 variations in the process by including random effects (or random
80 coefficients). Modeling repeated measurements of behavior is well
81 established in psychology and psychometry (for review see McArdle,
82 2009). In the last decade, therehas been a growing interest in applications
83 of mixed-effects models in the context of neuroimaging of development
84 (Shaw et al., 2006, 2008; Raznahan et al., 2011a,b, 2014; Schumann
85 et al., 2010) and aging neuroscience (Lerch et al., 2005; Lau et al., 2008;
86 Carmichael et al., 2010). More articles focus specifically on methods for
87 analysis of longitudinal MRI (Resnick et al., 2000; Chan et al., 2003;
88 Frost et al., 2004; Bernal-Rusiel et al., 2012) and voxel-wise or vertex-
89 wise longitudinal modeling (Guillaume et al., 2014; Li et al., 2013; Skup
90 et al., 2012; Chen et al., 2013; Bernal-Rusiel et al., 2013).
91 Bayesian inference has been successfully applied to functional brain
92 scans in multiple domains, ranging from general linear models, group
93 analysis, spatial models, analysis of connectivity, to model comparisons
94 (for extensive review see Woolrich, 2012). Bayesian inference typically
95 exploits hierarchical observationmodels that take into account different
96 levels of observations (e.g. scans and subjects), allows for the inclusion
97 of biologically informed prior-beliefs about parameters, and affords
98 comparisons among competing (nested or non-nested) models. Bayes-
99 ian treatment ofwhole-brain neuroimagingdatamight also increase the
100 sensitivity byfinessing theproblemofmultiple comparison (Friston and
101 Penny, 2003; Schwartzman et al., 2009). In contrast to classical infer-
102 ence, it also enables the assessment of evidence in favor of the null hy-
103 pothesis; i.e., no aging-related change or preservation of structural
104 integrity. These issues speak to a Bayesian framework for modeling
105 structural change trajectories. However, there are currently only a few
106 existing studies that consider longitudinal structural MRI (Schmid
107 et al., 2009; Chen et al., 2012).
108 Here, we propose a generic modeling framework for longitudinal
109 morphometric brain changes in development and aging studies. After
110 diffeomorphic registration on the within-subject (Ashburner and
111 Ridgway, 2013) and between-subject (Ashburner and Friston, 2011)
112 level, we build a generative linear mixed-effects model of repeated ob-
113 servations. Themodel inversion flexibly accommodates unbalanced and
114 sparse designswith potentially different numbers of follow up scans per
115 subject. Using Expectation Maximization (EM) we obtain voxelwise in-
116 dividual and group level change parameters and compute Posterior
117 Probability Maps (PPM) (Friston and Penny, 2003) for inference about
118 regionally specific effects. In other words, we focus onmaking regional-
119 ly specific inferences about longitudinal changes in anatomy, that
120 properly account for both within and between subject variability in
121 neurodevelopmental trajectories.
122 We validate themodel using simulated data and a large MRI sample
123 from the ADNI cohort. We then demonstrate a parametric analysis of
124 subject specific covariates and explore the model space to optimize
125 explanations of individual trajectory differences.

126 Methods

127 In this section, we introduce a generative model of local structural
128 trajectories using random and fixed effects; i.e., a mixed effect, hierar-
129 chical or multilevel model. We describe the Bayesian formulation, the
130 implicit (empirical) prior covariance components and their estimation
131 using expectation maximization (EM). We extend this framework to
132 modeling of trajectories over multiple groups and review the use of
133 probabilistic parametermaps (PPM) for inference onmodel parameters.
134 We conclude this section with a treatment of Bayesian model selection
135 of ensemble trajectory models.

136 A generative model of local structural trajectories

137 Themodel for age-related changes of local brain structure (per voxel
138 or region) is based upon the following generative model, which

139comprises a likelihood and prior. The model is an application of the
140Bayesian linear hierarchical observation framework introduced by
141Friston et al. (2002a) (for application in the context of fMRI see also
142Friston et al., 2002b).
143We here consider the special case of a two level model, one for indi-
144vidual structural trajectories and a second level for an ensemble of tra-
145jectories, denoted by ε. The first level likelihood model is based on the
146assumption that the trajectory of underlying volumetric changes is sam-
147pled from subject-specific functions of age or time

yi j ¼ g ti j; θ 1ð Þ
i

� �
þ ϵ 1ð Þ

i j ð1Þ

149149where the measurement yij is the j-th of mi observations (e.g. of gray
matter density at a single voxel) obtained from the i-th of N subjects

150at age tij, and ϵij(1) denotes an i.i.d. Gaussianmeasurement errorwith var-
151iance σ2. In what follows we use time centered tij in order to develop
152trajectories around the reference age, i.e. tr, which typically is chosen
153as the mean age of the sample. Individual differences of trajectories
154are thus encoded by subject-specific change parameters θi(1) resulting
155in an ensemble of age-related trajectories ε= {g(t, θi(1))}i = 1

N for a sam-
156ple of individuals. In particular, we parameterize the function describing
157the trajectory using a D degree polynomial expansion of age

g t; θ 1ð Þ
i

� �
¼

XDþ1

d¼1

θ 1ð Þ
di t

d−1 ð2Þ

159159with coefficients θi(1) = [θ1,i
(1), …, θD + 1,i

(1) ]T. For example, for D = 2 we
have 3 coefficients per subject, encoding the intercept, slope and qua-

160dratic terms. We can easily write these linear models using compact
161matrix notationwith individual designmatrices and change parameters
162as gi = Xi

(1)θi(1). Then, the model for all subjects follows
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164164

165

y ¼ X 1ð Þθ 1ð Þ þ ϵ 1ð Þ ð4Þ

167167with subject i-th observations yi ¼ ½yi1; yi2;…; yimi
�T , M = ∑ mi

concatenated observations y,first level designmatrixX(1), concatenated
168change parameters θ(1), and first level Gaussian errors ϵ(1). Vectorizing
169observations yij in ‘person-scan’ format, i.e. the successive scans are
170grouped by subjects (all from subject 1, all from subject 2, etc.), is a nat-
171ural way to arrange longitudinal data with missing scans and varying
172number of follow ups. This additionally simplifies the structure of the
173first level design matrix, which then takes a block-diagonal form.
174Note, that this first level model explicitly accommodates unbalanced
175designs, i.e. Xi

(1) ≠ Xj
(1), with varying ages and numbers of scans per

176subject.
177The sample change parameters of the trajectory functions are deter-
178mined by (primarily non-age-dependent) subject specific effects. Note
179that these second level regressors can be chosen to model covariates
180of interest, e.g. IQ scores, genetic markers, or symptom severity, as
181well as purely confounding variables, e.g. global brain parameters.
182These measures are summarized in a centered N × R between-subject
183covariates matrix Z with entries zir. For example, in the results section
184below, we use a genetic risk score as a covariate of interest and test to
185see how this predicts first level parameters. Now, we adopt the follow-
186ing linear second level model
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