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25We present a novel strategy for deriving a classification system of functional neuroimaging paradigms that
26relies on hierarchical clustering of experiments archived in the BrainMap database. The goal of our proof-of-
27concept application was to examine the underlying neural architecture of the face perception literature
28from a meta-analytic perspective, as these studies include a wide range of tasks. Task-based results
29exhibiting similar activation patterns were grouped as similar, while tasks activating different brain net-
30works were classified as functionally distinct. We identified four sub-classes of face tasks: (1) Visuospatial
31Attention and Visuomotor Coordination to Faces, (2) Perception and Recognition of Faces, (3) Social
32Processing and Episodic Recall of Faces, and (4) Face Naming and Lexical Retrieval. Interpretation of these
33sub-classes supports an extension of a well-known model of face perception to include a core system for
34visual analysis and extended systems for personal information, emotion, and salience processing. Overall,
35these results demonstrate that a large-scale data mining approach can inform the evolution of theoretical
36cognitive models by probing the range of behavioral manipulations across experimental tasks.

37 © 2015 Published by Elsevier Inc.
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42 Introduction

43 As more resources are being developed and deployed for the
44 management, sharing, andmeta-analysis of “big data” in neuroimaging,
45 the development of knowledge representation systems has likewise
46 accelerated to enable objective and succinct descriptions of these
47 data, including neurotechnological, neuroanatomical, and cognitive
48 parameters. However, cognitive data descriptors are relatively under-
49 developed compared to those from the neurotechnological and
50 neuroanatomical domains. That is, as a community we are relatively
51 more confident regarding data annotations differentiating sub-class
52 or type of MRI scan (e.g., T2* or EPI images) or brain structure
53 (e.g., hippocampus or amygdala) than in differentiating data that re-
54 lates to memory (e.g., episodic or working). Nevertheless, semantic

55representation of cognitive and perceptual mental processes is a neces-
56sary component of large-scale, community-wide, and consensus-based
57mapping of structure–function correspondences in the human brain.
58Such a representation must include the full and robust definitions of
59mental processes; however, the identification and standardization of
60terms we use to describe the multitude and diversity of cognitive and
61perceptual functions is an inexact science. As a result, many alternative
62and often competitive terminologies exist. With the rise of high profile,
63high-impact projects such as the Human Connectome Project (Van
64Essen et al., 2013; Toga et al., 2012), the BRAIN Initiative (BRAIN
65Working Group, 2014), the Human Brain Project (Markram, 2012),
66and the RDoCs framework (Insel et al., 2010), the need for knowledge
67representations of cognitive aspects of neuroscience data has reached
68a critical point. Our community goal of mapping the human brain
69will surely require definition and standardization of the terms that
70are used to describe human thought and mental processes, as well as
71the behavioral tasks used to elicit them during neuroscience
72experiments.
73Here, we propose and validate a strategy for deriving a classification
74system of functional neuroimaging paradigms using a proof-of-concept
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75 application. Our aim was to develop a meta-analytic data mining
76 approach for paradigm classification based on neurobiological evidence
77 provided by functional activation patterns, with the intent that such
78 a strategy may mitigate the challenges associated with a lack of
79 paradigm-related semantic consensus within a given domain. The
80 overall premise of this work is that differences in activation patterns
81 across studies should be captured and leveraged as they indicate
82 meaningful segregations in brain function. Under this premise, tasks
83 activating similar brain networks should be grouped as functionally
84 similar in a cognitive schema, while tasks demonstrating differential
85 activation patterns should be classified as functionally distinct.
86 As an exemplar domain, we demonstrate our approach in the
87 context of face discrimination, as this category of neuroimaging tasks
88 is highly heterogeneous and commonly employed across numerous
89 perceptual, cognitive, and affective studies in both healthy and diseased
90 populations. These studies broadly include visual stimulus presentation
91 of human faces in which participants passively view faces or actively
92 discriminate one or more aspects or features of face presentation
93 (e.g., old/new, male/female, and happy/sad/angry/fearful). Faces can
94 be used as stimuli for classical conditioning, lip-reading, and naming
95 tasks, or to cue autobiographical memory retrieval, emotion induction,
96 or social processing. Given the wide scope of face tasks in the literature,
97 our aimwas to establish a neuroinformatics procedure capable of objec-
98 tively decomposing the collective group intomeaningful sub-categories.
99 Using meta-analytic data reported across a diverse range of studies
100 archived in the BrainMap database, we sought to determine if multiple
101 functional networks distributed across the brain are differentially
102 recruited for various task paradigms. Our ultimate goal was threefold:
103 to develop a paradigm classification strategy for use by cognitive ontol-
104 ogies, to examine the underlying neural architecture of face perception
105 from a meta-analytic perspective, and, more broadly, to assess whether
106 an evidence-based data mining approach can inform the evolution of
107 existing cognitive models.

108 Methods

109 Meta-analytic data extraction and pre-processing

110 The BrainMap database (Fox and Lancaster, 2002; Laird et al., 2005a,
111 2011a) currently archives brain activation locations from over 11,900
112 functional magnetic resonance imaging (fMRI) or positron emission
113 tomography (PET) experiments (from over 2,400 journal articles).
114 These experiments have been manually annotated with metadata that
115 describe the experimental design of each archived study. Our study
116 focused on a subset of tasks within BrainMap that were annotated
117 with the paradigm class of “Face Monitor or Discrimination”; the
118 relevant experiments were identified and downloaded for further anal-
119 ysis using the desktop search engine application, BrainMap Sleuth
120 (http://www.brainmap.org/sleuth). Search results were filtered to in-
121 clude only face tasks performed by healthy adults to limit any potential
122 bias due to effects of age, disease, or treatment differences. Information
123 about the specific behavioral task performed by participants in each
124 experiment, along with the experiment name, sample size, and stereo-
125 taxic coordinates of activation were exported as a tab-delimited text
126 file. Exported coordinates reported in MNI space (Evans et al., 1993;
127 Collins et al., 1994) were transformed to Talairach space (Talairach
128 and Tournoux, 1988) using the Lancaster transform function icbm2tal
129 (Lancaster et al., 2007). icbm2tal was developed using global affine
130 transforms to accommodate spatial disparity between Talairach and
131 MNI coordinates as compared to the earlier mni2tal transform (Brett
132 et al., 2001), and to minimize meta-analytic spatial dissonance due to
133 template differences (Laird et al., 2010). Modeled activation (MA)
134 maps were generated by modeling each coordinate of activation as a
135 spherical Gaussian distribution of uncertainty to represent the probabil-
136 ity of activation for each voxel, centered upon the experiment's activa-
137 tion foci (Fig. 1, Step 1). The algorithm includes an estimation of the

138inter-subject and inter-laboratory variability associated with each
139experiment, and is weighted by the number of subjects included in
140each experiment (Eickhoff et al., 2009). The per-experiment MA proba-
141bility maps were converted into feature vectors of voxel values and
142concatenated horizontally to form an array of size n experiments by
143p voxels.

144Correlation matrix based hierarchical clustering analysis

145After generating the n X p matrix of MA probability maps, we
146employed a pairwise correlation analysis in which correlation coeffi-
147cients were calculated for each n experiment compared to every other
148n experiment, to assess similarity of spatial topography across MA
149maps. Hence, the n X p array of MA maps was transformed into an n X
150n correlation matrix that captured the similarity of whole-brain
151modeled activation images across face discrimination experiments
152(Fig. 1, Step 2). Experiments within the n X n correlation matrix were
153subsequently grouped into clusters using hierarchical clustering analy-
154sis, an agglomerative unsupervised classifier (Fig. 1, Step 3). Previous
155implementation of correlation matrix based hierarchical clustering of
156resting state fMRI data (Liu et al., 2012; Keilholz et al., 2010) and hierar-
157chical clustering of BrainMap-based meta-analytic images (Laird et al.,
1582011b) demonstrated optimal clustering using the average linkage algo-
159rithm and 1 − r as the distance between clusters, where r is the
160Pearson's correlation coefficient. Following initial testing for optimal
161performance, these parameters were adopted in the present study.
162Notably, Pearson's correlation distance maximizes the effects of direc-
163tion, rather than magnitude, of the two observational vectors, thus
164identifying correlated MA maps as being topologically similar and
165anti-correlated MA maps as dissimilar.
166The resultant dendrogram was examined to identify sets of experi-
167ments that clustered together. Selecting a clustering solution yielding
168an optimal parcellation of BrainMap experiments relied on two mea-
169sures. The cophenetic distance between clusters at a specific model
170order (i.e., number of clusters) describes the dissimilarity between
171sub-clusters, and is intrinsically higher at low model orders (e.g., a
172two-cluster solution). Importantly, the relative difference in cophenetic
173distances when transitioning from model order x to the next highest
174model order x + 1 can be informative when examining if cluster
175separation results in vastly different solutions. Therefore, we sought to
176determine the extent to which increasing model order resulted in
177substantially different activation patterns respective to each cluster by
178maximizing the relative difference, dc, in cophenetic distances cx and
179cx+1, as model order, x, increased:

dc ¼ cxþ1−cx
cxþ1

: ð1Þ
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Related to the abovemeasure of difference in cophenetic distances is
182the impact that increasing model order has on separating clusters into
183sub-clusters of proportionate number of variables (e.g., experiments).
184Increasing the cluster solution could potentially yield a segregation of
185experiments in which one sub-cluster dominates with a disproportion-
186ately large number of experiments. Therefore, we sought to minimize
187the effect of cluster segregation by calculating the maximum density
188of experiment separation. Essentially, we aimed to determine if increas-
189ing model order resulted in a disproportionate divergence of experi-
190ments. For example, if cluster i0, consisted of n0 experiments at model
191order x, and separated into clusters i1 and i2, with n1 and n2 experiments,
192respectively, then the density of experiment separation, ds is calculated
193as:

ds ¼ n1

n0
;n1≥n2: ð2Þ
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