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Previous studies have examined the neural correlates of proactive control using a variety of behavioral para-
digms; however, the neural network relating the control process to its behavioral consequence remains unclear.
Here, we applied a dynamic Bayesianmodel to a large fMRI data set of the stop signal task to address this issue. By
estimating the probability of the stop signal – p(Stop) – trial by trial, we showed that higher p(Stop) is associated
with prolonged go trial reaction time (RT), indicating proactive control of motor response. In modeling fMRI sig-
nals at trial and target onsets, we distinguished activities of proactive control, prediction error, and RT slowing.
We showed that the anterior pre-supplementary motor area (pre-SMA) responds specifically to increased stop
signal likelihood, and its activity is correlated with activations of the posterior pre-SMA and bilateral anterior
insula during prolonged response times. This directional link is also supported by Granger causality analysis.
Furthermore, proactive control, prediction error, and time-on-task are each mapped to distinct areas in the
medial prefrontal cortex. Together, these findings dissect regional functions of the medial prefrontal cortex in
cognitive control and provide system level evidence associating conflict anticipationwith itsmotor consequence.

© 2015 Elsevier Inc. All rights reserved.

Introduction

The ability to proactively adjust our behavior is integral to survival.
Studying the neural bases of proactive control advances our under-
standing of how decisions are made in a changing environment and
why individuals are engaged in impulsive behavior.

Proactive control has been studied in the laboratory with a variety of
behavioral paradigms (Brass and Haggard, 2007; Horga et al., 2011;
Kuhn et al., 2009). Frontal and parietal cortices respond to cued atten-
tion allocation (Luks et al., 2007) and preparatory control of a switch
in response (Rushworth et al., 2001). When participants withheld
movements while waiting to detect a target, activation of the superior
medial prefrontal cortex (MPFC) and inferior parietal lobule supports
proactive control (Jaffard et al., 2008). The importance of proactive
control is demonstrated in a computational model of saccadic eye
movement (Lo et al., 2009) and may be generalized to other systems
(Ballanger, 2009).

In the stop signal task (SST), increased stop signal probability
bolsters proactive control, evidenced by delayed activity in the primary
motor cortex (Jahfari et al., 2010). Varying the occurrence of go trials
prior to a stop trial, Vink et al. (2005) showed MPFC, caudate and left
insula increasing activation to stop likelihood. Chikazoe et al. (2009)
used a SST with two types of go trials, ‘go-certain’ and ‘go-uncertain’.
Motor responses may require interruption in ‘go-uncertain’ trials; thus
elicited activations are thought to reflect proactive inhibitory control.
A recent study of choice SST showed activation of the superior medial
frontal and inferior frontal cortices when participants are informed,
compared to uninformed, as to which effector to use (Smittenaar
et al., 2013). Furthermore, in reaction time tasks proactive control is fre-
quently followed by prolonged response times, and studies have also
described medial prefrontal activities in association with time-on-task
(Carp et al., 2010; Grinband et al., 2011). Together, these studies
highlighted an important role of the MPFC in proactive control but it
remains unclear whether distinct regions of the MPFC mediate conflict
anticipation and behavioral outcome or whether these activities are re-
lated. Another important issue concerns the confound of stimulus pre-
diction error, which is known to drive MPFC activation (Glascher et al.,
2010; Ide et al., 2013;Nee et al., 2011; So and Stuphorn, 2012). As point-
ed out earlier, because the expectation of the stop signal is not realized
during go signal onset, a violation of this expectation or prediction error
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occurs at the same time, presenting a confound to proactive control
(Zandbelt et al., 2013).

The current study aimed to address these issues.We used a Bayesian
model to compute the likelihood of stop signal – p(Stop) – trial by trial
in the SST and established a correlation between p(Stop) and reaction
time (RT) – a sequential effect – for individual subjects. We modeled
the fMRI signals at trial onset to characterize activations to p(Stop),
and at go signal onset to characterize activations to prediction error
and RT slowing.With exclusive maskingwe identified neural responses
specific to each component process of proactive control. We showed
that stop signal anticipation, stimulus prediction error, and RT slowing
(“time-on-task”) aremapped to distinct areas in theMPFC. Importantly,
neural activities specific to stop signal anticipation are both correlated
and Granger causally related to activities specific to RT slowing,
supporting a directional link between these two processes.

Methods

Participants and behavioral task

One hundred fourteen healthy adults (64 females; 30.7± 11.0 years
of age) participated in this study. All participants signed a written con-
sent after they were given a detailed explanation of the study in accor-
dance with a protocol approved by the Yale Human Investigation
Committee. We were able to include a large number of participants in
the current study by combining data sets both from studies exclusively
of healthy individuals (Hendrick et al., 2010; Hu et al., 2012; Ide and Li,
2011; Zhang and Li, 2012; Zhang et al., 2012) and from the healthy
cohort of clinical studies (Bednarski et al., 2012; Hendrick et al., 2012;
Li et al., 2009b; Yan and Li, 2009), all conducted under the same behav-
ioral task and in the identical 3 T scanner.

Participants performed a stop signal task or SST (Hu and Li, 2012; Li
et al., 2009a), in which go and stop trials were randomly intermixed in
presentation with an inter-trial-interval of 2 seconds (s). A fixation dot
appeared on screen to signal the beginning of each trial. After a fore-
period varying from 1 s to 5 s (uniform distribution), the dot became a
circle – the “go” signal – prompting participants to quickly press a but-
ton. The circle disappeared at button press or after 1 s if the participant
failed to respond. In approximately one quarter of trials, the circle was
followed by a ‘cross’ – the stop signal – prompting participants to with-
hold button press. The trial terminated at button press or after 1 s if the
participant successfully inhibited the response. The time between the
go and stop signals, the stop signal delay (SSD), started at 200 ms and
varied from one stop trial to the next according to a staircase procedure,
increasing and decreasing by 67 ms each after a successful and failed
stop trial (Levitt, 1971). The 67 ms step reflects four screen frames
(monitor refreshing rate = 60 Hz) during stimulus presentation, as
used in almost all of our previous studies (Chao et al., 2012; Farr et al.,
2014; Ide et al., 2013; Liao et al., 2014; Luo et al., 2013; Winkler et al.,
2013; Zhang et al., 2014, in press). In an earlier work we have tried a
smaller staircase (32 ms) in a pilot study, which yielded similar perfor-
mance profiles (Li et al., 2005). With the staircase procedure we antici-
pated that participants would succeed in withholding the response half
of the time. Participants were trained briefly on the task before imaging
to ensure that they understood the task. Theywere instructed to quickly
press the button when they saw the go signal while keeping in mind
that a stop signal might come up in some trials. In the scanner, they
completed four 10-minute sessions of the task, with approximately
100 trials in each session.

Behavioral data analysis

A critical SSD was computed for each participant that represented
the time delay required for the participant to successfully withhold
the response in half of the stop trials, following a maximum likelihood
procedure (Wetheril et al., 1966). Briefly, SSDs across trials were

grouped into runs, with each run being defined as a monotonically
increasing or decreasing series. We derived a mid-run estimate by tak-
ing the middle SSD (or average of the two middle SSDs when there
was an even number of SSDs) of every second run. The critical SSD
was computed by taking the mean of all mid-run SSDs. It was reported
that, except for experiments with a small number of trials (b30), the
mid-run measure was close to the maximum likelihood estimate of
X50 (50% positive response, Wetheril et al., 1966). The stop signal reac-
tion time (SSRT) was computed for each participant by subtracting the
critical SSD from the median go trial reaction time (Logan et al., 1984).

The SSRT can also be computed from a critical SSD estimated from an
“inhibitory function”, by fitting the response rates at different SSDs to a
sigmoid function. In order to have a robust estimate of correct response
rates, the trial numbers at different SSDs should be the same or similar,
which applies to experimental designs where the SSD's are blocked. In
the currentwork,we used a staircase procedurewith varying trial num-
bers across SSDs. In particular, the low number of trials at the lower and
higher ends of SSD oftentimes resulted in a less than ideal fit. Therefore,
we used a maximum likelihood procedure to estimate the critical SSD
and SSRT, following many of our published studies and the literature.

A sequential effect was quantified by Pearson correlation between
p(Stop) – the Bayesian estimate of the probability of a stop signal (see
below) – and RT on go trials for individual subjects.

Trial by trial Bayesian estimate of the likelihood of a stop signal

We used a dynamic Bayesian model (Yu and Cohen, 2009) to esti-
mate the prior belief of an impending stop signal on each trial, based
on prior stimulus history. The model assumes that subjects believe
that stop signal frequency rk on trial k has probability α of being the
same as rk − 1, and probability (1 − α) of being re-sampled from a
prior distribution π(rk). Subjects are also assumed to believe that trial
k has probability rk of being a stop trial, and probability 1 − rk of being
a go trial. Based on these generative assumptions, subjects are
assumed to use Bayesian inference to update their prior belief of seeing
a stop signal on trial k, p(rk|sk − 1) based on the prior on the last trial
p(rk − 1|sk − 1) and last trial's true category (sk = 1 for stop trial, sk =
0 for go trial), where sk = {s1,…, sk} is short-hand for all trials 1 through
k. Specifically, given that the posterior distribution was p(rk − 1|sk − 1)
on trial k − 1, the prior distribution of stop signal in trial k is given by:

p rkjsk−1ð Þ ¼ αp rk−1jsk−1ð Þ þ 1−αð Þπ rkð Þ;

where the prior distribution π(rk) is assumed to be a beta distribution
with prior mean pm, and shape parameter scale, and the posterior
distribution is computed from the prior distribution and the outcome
according to Bayes' rule:

p rkjskð Þ∝P skjrkð Þp rkjsk−1ð Þ:

The Bayesian estimate of the probability of trial k being a stop trial,
which we colloquially call p(Stop) in this paper, given the predictive
distribution p(rk|sk − 1) is expressed by:

P sk ¼ 1jsk−1ð Þ ¼
Z

P sk ¼ 1jrkð ÞP rkjsk−1ð Þdrk
¼

Z
rkP rkjsk−1ð Þdrk ¼ rkjsk−1h i:

In other words, the probability p(Stop) of a trial k being a stop trial is
simply themean of the predictive distribution p(rk|sk − 1). The assump-
tion that the predictive distribution is a mixture of the previous posteri-
or distributions and a generic prior distribution is essentially equivalent
to using a causal, exponential, linear filter to estimate the current rate of
stop trials (Yu et al., 2009). In summary, for each subject, given a
sequence of observed go/stop trials, and the three model parameters
{α, pm, scale}, we estimated p(Stop) for each trial.
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