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The striatum is involved inmany different aspects of behaviour, reflected by the variety of cortical areas that pro-
vide input to this structure. This input is topographically organized and is likely to result in functionally specific
signals. Such specificity can be examined using functional clustering approaches. Here, we propose a Bayesian
model-based functional clustering approach applied solely to resting state striatal functional MRI timecourses
to identify intrinsic striatal functional modules. Data from two sets of ten participants were used to obtain
parcellations and examine their robustness. This stable clustering was used to initialize a more constrained
model in order to obtain individualized parcellations in 57 additional participants. Resulting cluster time courses
were used to examine functional connectivity between clusters and related to the rest of the brain in a GLM anal-
ysis.Wefind six distinct clusters in each hemisphere, with clear inter-hemispheric correspondence and function-
al relevance. These clusters exhibit functional connectivity profiles that further underscore their homologous
nature and are consistent with existing notions on segregation and integration in parallel cortico-basal ganglia
loops. Our findings suggest that multiple territories within both the affective and motor regions can be distin-
guished solely using resting state functional MRI from these regions.

© 2015 Elsevier Inc. All rights reserved.

Introduction

The striatum serves as the input structure of the basal ganglia, which
are involved in motor control, attention, learning and decision-making.
This functional versatility is subserved by inputs from thalamus, hippo-
campus, amygdala and many neocortical regions. Animal studies have
shown that these inputs are topographically organized (Haber, 2003;
Middleton and Strick, 2000; Alexander et al., 1986; Groenewegen,
2003) and more recent tractography studies have provided evidence
that the same holds for humans (Lehéricy et al., 2004; Leh et al., 2007;
Draganski et al., 2008; Tziortzi et al., 2013).

Such organization of inputs may reflect a division into functional
subunits and discriminating these is important when studying cortico-
striatal connectivity specifically (e.g. in the context of development
(Rubia et al., 2006), ageing (Hedden and Gabrieli, 2004) or pathology
(Lawrence et al., 1998; Unschuld et al., 2013)) as well as whole-brain
connectivity (Butts, 2009). Such a subdivision was found in a meta-
analysis of 126 functional activation studies (Postuma and Dagher,
2006), showing a division into three parts, i.e. the dorsal caudate, ven-
tral striatum and dorsal caudal putamen. Each showed specificity in
the pattern of coactivation in task-based functional magnetic resonance
imaging (fMRI). Di Martino et al. (2008) used these results as the basis

for resting state functional connectivity analysis and found that seeds
based on this subdivision showed distinct connectivity patterns,
confirming the meta-analytic results. Barnes et al. (2010) identified
participant-specific equivalents of these three striatal subunits by clus-
tering the whole-brain connectivity profiles for voxels in the striatum.

Using a dataset comprising 1000 participants, Choi et al. (2012) gen-
erated a striatal parcellation, demonstrating a functional subdivision
consistent with earlier results. Their approach was based on correlating
striatal voxel timecourses with cortical surface-node timecourses.
Voxels were assigned labels according to which network occurred
most often among the top 25 correlated voxels. This resulted in a
parcellation where the caudate was associated with frontoparietal and
default mode networks, the accumbens was assigned to the limbic net-
work and the putamen was split between frontoparietal, dorsal atten-
tion, default mode and somatomotor networks. Recently, Jung et al.
(2014) reported parcellations based on correlation maps between
striatal voxels and the rest of the brain. The parcellation was obtained
using K-means clustering on the group averaged correlation maps for
the caudate and putamen separately. This produced several different
levels of parcellation and these were subsequently used to investigate
the functional connectivity of clusters. They found that, even at fine-
grained parcellations, the functional connectivity profiles of the clusters
were distinct. In the caudate, these could be grouped into clusters asso-
ciated with regions involved in cognition (dorsal caudate) and emotion
(ventral caudate). Rostral putamen clusters were also associated with
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these types of areas, whereas the caudal putamenwasmostly related to
motor areas.

A limitation of the approach presented in Choi et al. (2012) is that it
relies on the parcellation of cortex into networks, i.e. each voxel in the
striatal mask is assigned to a cluster based on its correlation with a net-
work. An implicit assumption in this heuristic is that these networks are
disjoint. It is more likely that functional networks, like the ones used in
Choi et al. (2012), represent a global mean configuration of functional
connectivity.When looking at striatal function specifically, we are inter-
ested in all the configurations that feature striatal regions, which are not
necessarily the same as the global mean configurations. K-means clus-
tering, used in Jung et al. (2014), has the limitation that the number of
clusters remains a free parameter to be tuned and has a bias towards
evenly sized clusters. In addition, as the clustering was performed on
connectivity profiles of the voxels, one needs to take care in interpreting
the functional connectivity results of the clusters. Furthermore, the
approaches in both Choi et al. (2012) and Jung et al. (2014) are group
analyses, i.e. they do not provide single subject parcellations.

In this paper, Bayesian non-parametric (BNP) modelling is used to
formulate a parcellation strategy to address these limitations. BNP
models provide flexible and powerful analysis methods necessary for
tackling difficult neuroimaging problems. For instance, Zhang et al.
(2014) proposed an interesting non-parametric framework for analysing
task fMRI data. BNPmodels steer clear of issues like choosing the number
of clusters by letting thembedetermined by the data (for a general intro-
duction to this type of model see (Gershman and Blei, 2012)). Andersen
et al. (2012) employed such a framework to cluster the striatum. They
used a graph-based clustering approach on the correlation matrix with
a Chinese restaurant process (CRP) as a prior on cluster assignments.
This approach has twomain advantages over previouswork, that is, it in-
fers the number of clusters from the data and it only uses data from the
striatum to perform clustering, permitting analysis of their relation with
the rest of the brain in the same dataset. Using this approach bilateral
striatal clusterswere found,which could be grouped into the caudate, ac-
cumbens and putamen. However, no further analyseswere performed to
assess the functional relevance of the obtained clusters.

The approach we propose is that of an infinite Gaussian mixture
model (IGMM), which allows us to generate a parcellation based solely
on the striatal functional timecourses. In this mixture model, each voxel
is assumed to belong to a cluster and voxels within a cluster are as-
sumed to have the same underlying BOLD timecourse and voxel-
specific noise structure. In contrast to Andersen et al. (2012), we use
the distance-dependent Chinese restaurant process (dd-CRP) (Blei and
Frazier, 2011) as a prior on cluster assignments. We chose this general-
ization of the CRP because it facilitates the incorporation of spatial con-
straints. This model is used to parcellate at the group level, a second
model is formulated to tailor these parcellations to single subject data.

The incorporation of a spatial constraint is based on the following
reasoning. The goal is to find functional modules and most connections
between neurons are short range. Hence we assume that a functional
unit is also spatially contiguous. A criticism might be that projections
from external regions can terminate in non-adjacent regions (Cavada
and Goldman-Rakic, 1991; Van Hoesen et al., 1981). However, this
does not in itself argue for non-contiguous clusters as the full set of
input and output connections might still be different for these termina-
tion sites. The assumption of contiguity can be checked by examining
the cluster timecourses and their connectivity profiles. While one
could also cluster without spatial constraint and enforce contiguity af-
terwards, employing a spatial constraint in the estimation is the more
elegant and computationally efficient solution.

We show that our approach reveals functional clusters in the stria-
tum representing specific elements within established cortico-striatal
loops with identifiable single-subject representations. We confirm
their functional relevance by looking at functional connectivity of
these subject-specific clusters with the rest of the brain, which demon-
strates their cluster-specific connection profiles.

Methods

Probabilistic model based clustering

Striatal voxels were clustered using an infinite Gaussian mixture
model (IGMM), which is visualized as a graphical model in Supplementa-
ry Fig. S1. In our Gaussian mixture model, each voxel n is assigned to a
cluster k and we draw a data point xnt for each time t from a Gaussian
with mean μkt and precision τkt. We placed a prior on the mean and
precision in the form of a normal-gamma distribution with parameters
μ0, κ0, a0 and b0. Note that we model timepoints as T independent
draws from a one-dimensional Gaussian, as opposed to one draw from a
T-dimensional Gaussian, where T is the number of timepoints. This has
the advantages of computational efficiency and simplified group analysis.

A GMM can be turned into an IGMM by using the whimsically
named Chinese Restaurant Process (CRP) as a prior on the cluster as-
signment. In the CRP analogy for our problem, voxels are customers,
clusters are tables and cluster parameters, i.e. timecourse and noise pa-
rameters, are the dishes served at a table. In this restaurant, there are an
infinite number of tables, each with their own dish, and as customers
come in, they sit at a random table. The probability of choosing a table
that already has seated customers is proportional to the number of
diners at that table. The probability that they sit at an empty table is pro-
portional to the concentration parameter of the CRP, which controls the
expected number of clusters. While there are an infinite number of ta-
bles, the restaurant staff need only consider those that are actually occu-
pied at any given point, bounding the maximum number of clusters to
the number of customers.

The CRP prior assumes exchangeability, that is, it does not matter in
what order customers enter the restaurant. We would like to incorpo-
rate a spatial constraint such that clusters are contiguous, however,
which violates this assumption. The distance-dependent Chinese Res-
taurant Process (Blei and Frazier, 2011) (dd-CRP) is a generalization of
the CRP that allows non-exchangeable elements. In the analogy for the
dd-CRP, each customer picks one customer with whom they would
like to sit, with probability proportional to how close they are. The con-
centration parameter of the dd-CRP then serves as an indication of how
strongly customers keep to themselves. In this work, both the concen-
tration parameter and distance between customers is encoded in an
N × N matrix A, where aij is the inverse distance between customers i
and j and aii corresponds to the concentration parameter. The dd-CRP
serves as a flexible prior, allowing us to incorporate a spatial constraint
and infer the number of clusters.

In order to complete themodel, we need to set the hyperparameters
A, μ0, κ0, a0 and b0. A spatial constraintwas specified such that aij=1 if i
and j are adjacent, otherwise aij=0. Voxels were considered adjacent if
they shared a face or an edge and voxels were considered adjacent to
themselves, that is, aii = 1 for all i. Data are assumed to be z-scored in
the time domain. Therefore we set μ0 = 0, while keeping this a flat
prior by setting κ0 to an extremely small value. We place a vague
prior on τkt by setting a0 = 2 and b0 = 1. The mean of this distribution
is a0

b0
¼ 2, corresponding to an expected within-cluster variance of 0.5.
In order to obtain single-subject representations of the group-level

parcellation, we employed a more constrained model informed by the
group-level results. In this model, we fix the number of clusters to
that of the group results. Further regularizationwas provided by placing
a spatial precision (inverse covariance) prior on the cluster timecourses.
This prior precision was obtained by taking the inverse of the group
level cluster covariance matrix. After initializing the parcellation to the
group level parcellation, we employed Gibbs sampling to reassign cus-
tomer links. This was applied to data from participants that were not
used in the group-level inference. With the number of clusters fixed
and each participant initialized the sameway, this results in identifiable
participant-specific versions of the group-level parcels. A more detailed
description of both models, including derivations, can be found in the
Methods S1.
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