ARTICLE IN PRESS

YNIMG-12225; No. of pages: 8; 4C: 5, 6

NeuroImage xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Generating original ideas: The neural underpinning of originality

- Naama Mayseless ^{a,*}, Ayelet Eran ^{b,1}, Simone G. Shamay-Tsoory ^{a,1}
 - ^a Department of Psychology, University of Haifa, Haifa 31905, Israel
 - ^b Department of Radiology, Rambam Health Care Campus, Haifa, Israel

ARTICLE INFO

Article history:

- Received 10 March 2015
- Accepted 13 May 2015
- 9 Available online xxxx

10 Keywords:

11

30

31 **39** 34

37

38

39

40

41 42

43

44

45 46

47

48 49

50

51 52

53

3

- Creativity
- 12 Originality
- 13 fMRI
- 14 Prefrontal cortex
- 15 Anterior cingulate cortex

ABSTRACT

One of the key aspects of creativity is the ability to produce original ideas. Originality is defined in terms of the 16 novelty and rarity of an idea and is measured by the infrequency of the idea compared to other ideas. In the cur- 17 rent study we focused on divergent thinking (DT) – the ability to produce many alternate ideas – and assessed 18 the neural pathways associated with originality. Considering that generation of original ideas involves both the 19 ability to generate new associations and the ability to overcome automatic common responses, we hypothesized 20 that originality would be associated with activations in regions related to associative thinking, including areas of 21 the default mode network (DMN) such as medial prefrontal areas, as well as with areas involved in cognitive 22 control and inhibition. Thirty participants were scanned while performing a DT task that required the generation 23 of original uses for common objects. The results indicate that the ability to produce original ideas is mediated by 24 activity in several regions that are part of the DMN including the medial prefrontal cortex (mPFC) and the 25 posterior cingulate cortex (PCC). Furthermore, individuals who are more original exhibited enhanced activation 26 in the ventral anterior cingulate cortex (vACC), which was also positively coupled with activity in the left 27 occipital–temporal area. These results are in line with the dual model of creativity, according to which original 28 ideas are a product of the interaction between a system that generates ideas and a control system that evaluates 29 these ideas.

© 2015 Published by Elsevier Inc.

Q3 Introduction

Creativity is the capacity that allows us to create art, develop new technologies and conduct new cutting edge research. As such, it has been studied in a variety of ways, including numerous studies that have focused on understanding the individual characteristics and developmental trajectories of creative geniuses (Csikszentmihalyi, 1996; Mumford and Gustafson, 1988; Simonton, 2003) such as great scientists, inventors or famous artists. Despite the fact that creativity is often thought of in terms of these creative geniuses, it is a property shared by all humans and is expressed in our ability to produce ideas that are on one hand novel and new and on the other hand appropriate and useful (Stein, 1953; Sternberg and Lubart, 1999).

In line with this conception, a distinction has been made between "little c" and "big C" creativity (Gardner, 1993). While "big C" creativity refers to great works of art and major discoveries, "little c" creativity refers to the everyday acts of creativity that allow us to solve everyday problems and adapt to the ever-changing environment (Runco, 2004). The study of "little c" creativity is thus important as it allows us to better

understand our ability to create new ideas during daily tasks and it provides a window into the processes that promote "big C" (Ward and 55 Kolomyts, 2010). One way used to measure creativity, specifically "little 56 c" creativity, is through divergent thinking (DT) tasks. DT requires the 57 formulation of multiple possible answers to a problem that has more 58 than one possible solution and allows for the generation of diverse 59 new ideas. Considering that measures of DT may predict creative 60 achievement (Kim, 2008), they are considered beneficial for the investigation of creativity and originality (Takeuchi et al., 2012).

Creativity is often seen as comprising both a measure of the quantity 63 of ideas (fluency of ideas) and a measure of their quality (originality). As 64 such, originality is a key feature of creativity (Runco and Jaeger, 2012). 65 The originality of an idea is based on its statistical infrequency, which 66 represents the uniqueness of the response (Wilson et al., 1953). Originality is a vital but insufficient condition for creativity as appropriateeness is also required. In order to be original, an individual must at the 69 same time inhibit more common automatic ideas as well as be able to 70 move flexibly to alternate associations that produce remote or indirect 71 associations (Mednick, 1962; Wilson et al., 1953). Thus, it is expected 72 that the brain network that mediates originality may be involved 73 in connecting between remotely related associations as well as in 74 inhibiting more common unoriginal associations.

Although previous studies have reported a lack of consistency in 76 brain areas related to creativity (Arden et al., 2010; Dietrich and 77 Kanso, 2010; Sawyer, 2011), one network that has repeatedly been 78

 $http://dx.doi.org/10.1016/j.neuroimage.2015.05.030\\1053-8119/© 2015 Published by Elsevier Inc.$

^{*} Corresponding author. Fax: +972 4 8240966.

E-mail addresses: naama27@gmail.com (N. Mayseless), a_eran@rambam.health.gov.il (A. Eran), sshamay@psy.haifa.ac.il (S.G. Shamay-Tsoory).

¹ Tel.: +972 4 8288778; fax: +972 4 8240966.

79 80

81 82

83

84

85 86

87

88

89

90

91 92

93

94

95 96

97

98

99

100 101

102

103

109 110

111

112

113

114

115

116

117

118

119 120

121

122 123

124 125

126

127

128

129 130

131

132

133

134

135

136

137

138

139

140

141

142

143 144 found to take part in creativity is the default mode network (DMN; Gusnard and Raichle, 2001; Jung et al., 2013; Raichle and Snyder, 2007). The DMN is a network of brain regions which is detected using functional connectivity MRI during task-free times. Activity in the DMN has been reported to increase when there is no external task and decrease in activation in the presence of an external task (Raichle et al., 2001). Regions within the DMN have been consistently reported to be activated in tasks of creativity (Beaty et al., 2014; Jung et al., 2013). These regions include the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC) and bilateral inferior parietal lobes including temporo-parietal areas (Fox et al., 2005; Gusnard and Raichle, 2001). Specifically, the mPFC has been implicated in a number of high-level functions, including decision-making (Fleck et al., 2006), association-based predictions (Bar, 2007, 2011), executive control and monitoring conflicts (Alvarez and Emory, 2006; Badre and Wagner, 2004). As such, it can serve to generate original ideas by inhibiting automatic common ideas while at the same time allowing for the flexibility needed in order to move between associations and form novel connections. In addition to the mPFC, temporo-parietal areas have also been reported as taking part in response to inhibition and competition, which can serve to generate more remote associations (Garavan et al., 1999; Menon et al., 2001; Smith et al., 2006). Binder et al. (2009) proposed that temporo-parietal areas play a role in complex information integration and knowledge retrieval, which are important features in creative associative thinking. Furthermore, temporo-parietal as well as posterior cingulate cortex (PCC) areas have been proposed to be involved in memory retrieval (Ciaramelli et al., 2008; Sugiura et al., 2005) an important part of creative thinking, reflecting bottom-up attentional processes (Cabeza, 2008). Therefore, the DMN (including the mPFC, PCC and temporo-parietal areas) can serve to inhibit the retrieval of more commonplace ideas to allow for more remote associations that can lead to greater originality (also see Fink et al., 2010). These findings taken together suggest that creativity can be mediated by a network involving areas of the DMN that supports the generation of unique and novel associative ideas while inhibiting those that are more mundane.

In direct support of the DMN and its components in creativity, Howard-Jones et al. (2005) found that creative story generation was associated with bilateral mPFC and right middle occipital activation and lower activity in the right inferior parietal lobe. Furthermore, increased resting functional connectivity in association with creative ability has been reported between areas of the DMN including the mPFC and the middle temporal gyrus (Wei et al., 2014) as well as between the mPFC and the PCC (Takeuchi et al., 2012). In addition, Beaty et al. (2014) found that highly creative individuals exhibit increased functional connectivity between bilateral inferior prefrontal cortex and areas in the DMN (mPFC, PCC and IPL). In line with these findings, areas in the DMN including the PCC and temporo-parietal cortex have been linked to mind wandering (Christoff et al., 2009), which has been shown to facilitate creativity (Baird et al., 2012). In addition, Ellamil et al. (2012) found that creative generation of ideas activated areas including the inferior and superior parietal lobule, while Fink et al. (2010) reported that generation of ideas is associated with activations in the left parietotemporal brain regions.

So far, only a few studies have focused on originality as part of the neuroscientific investigation of creativity. Chávez-Eakle et al. (2007) found that cerebral blood flow (CBF) in the anterior region in the rostral PFC (ventomedial PFC, BA 10) was associated with the originality of responses as measured by DT tasks. Others have found that original idea production is associated with increases in alpha EEG power, most noticeably in centro-parietal cortices (Fink and Neubauer, 2006) especially in the right hemisphere (Grabner et al., 2007). In a recent fMRI investigation, Benedek et al. (2014) found significant activation in the left inferior parietal area when new ideas were generated (compared to old ideas). With respect to originality levels, Kowatari et al. (2009) reported that activations in parietal cortices predicted lower levels of originality in a task of design creation.

In accordance with the neuroimaging findings of a frontal temporoparietal network that mediates originality, Shamay-Tsoory et al. (2011) 146 reported that patients with mPFC lesions exhibited lower originality 147 compared to a group of healthy controls, whereas patients with inferior 148 frontal lesions and those with parietal-temporal lesions performed 149 comparably and even better than healthy controls.

Taken together, the above findings indicate that regions which are 151 part of the DMN such as the mPFC, PCC and the inferior parietal lobule 152 (angular gyrus and supramarginal gyrus) are key regions in a network 153 that mediates the generation of creative original ideas. Yet it is unclear 154 to what extent each area contributes to originality and what process 155 leads to more original ideas.

The aim of the present study was to investigate the mechanisms underlying the generation of original ideas. Furthermore, the current study 158 sought to identify brain regions whose activity predicts increased levels 159 of originality. To assess originality during scanning, we modified the 160 classic Alternate Uses Task (AUT) in order to examine the ability to 161 generate original ideas.

We hypothesized that originality would be associated with greater 163 activity regions of the DMN (in the mPFC as well as in temporo- 164 parietal brain regions, including the temporo-parietal junction and the 165 PCC). Furthermore, we predicted that task-related connectivity be- 166 tween areas in this network would be positively associated with individual originality levels.

Method 169

168

Participants 170

Thirty healthy right-handed volunteers (mean age 25.7, SD = 2.3, 15 171 female) participated in the study. Two participants were excluded due 172 to excessive movement and one left the study voluntarily. In addition, 173 the responses of two participants were not recorded due to technical 174 difficulty with the recording device. All participants had normal or 175 corrected-to-normal vision, all provided written informed consent and 176 all were paid for their participation. The consent and protocol were approved by the Helsinki Committee of Rambam Health Care Campus in 178 Haifa, Israel. The average intelligence level of the participants as measured by the Shipley Intelligence Scale score was within the normal 180 range (\geq 40). There were no significant differences between males 181 and females in the Shipley scores (t = 0.48, p = 0.63) and no correlation 182 with originality (r = 0.08, p = 0.68). 183

DT task 184

A modified version of the AUT (Guilford et al., 1978) was designed to 185 allow for the measurement of originality in the fMRI experiment. The 186 task was based on the paper version of the AUT, in which an everyday 187 object is presented and participants are asked to provide possible alter- 188 native uses for this object that are different from the everyday common 189 use. In the modified computerized version used in the current study, 190 participants were presented with the object and were instructed to 191 think of one possible use for the object. The uses were required to be different from the everyday common use, and participants were asked to 193 think of an original use, with emphasis on it being novel and unique. 194 The modified computerized version was tested in a pilot study in 195 order to verify that originality levels did not differ in the two versions 196 (the customary paper version and the modified one). The pilot study 197 was conducted among fifty healthy right-handed volunteers (mean 198 age 23.61 SD = 2.38). Participants completed both the paper version 199 of the AUT and the modified computerized version, which were 200 counterbalanced. The paper version consisted of five objects with a 201 time limit of ten minutes for all five objects. The computerized version 202 consisted of five objects that were different from those in the paper ver- 203 sion. In the computerized version, each object was presented twice 204 (separated into two blocks, once in each block). Participants were 205

Download English Version:

https://daneshyari.com/en/article/6024918

Download Persian Version:

https://daneshyari.com/article/6024918

<u>Daneshyari.com</u>