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The “ten ironic rules for statistical reviewers” presented by Friston (2012) prompted a rebuttal by Lindquist et al.
(2013), which was followed by a rejoinder by Friston (2013). A key issue left unresolved in this discussion is the
use of cross-validation to test the significance of predictive analyses. This note discusses the role that cross-
validation-based and related hypothesis tests have come to play in modern data analyses, in neuroimaging and
other fields. It is shown that such tests need not be suboptimal and can fill otherwise-unmet inferential needs.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Friston (2012) lampoons hostile statistical reviews in neuroimaging
by setting forth ten “ironic rules” that an imagined reviewer can follow
to ensure a paper's rejection. The seventh of these is to question the
validity of the analyses. A suggested example paragraph, by which a
reviewer can implement this “rule,” reads in part:

… the validity of the inference seems to rest uponmany strong assump-
tions. It is imperative that the authors revisit their inference using cross
validation and perhaps some form of multivariate pattern analysis.

Friston notes, however, that the authors can counter with the fol-
lowing response, which he regards as “correct”:1

… the inference made using cross validation accuracy pertains to exactly
the same thing as our classical inference; namely, the statistical depen-
dence (mutual information) between our explanatory variables and neu-
roimaging data. In fact, it is easy to prove (with the Neyman–Pearson
Lemma) that classical inference is more efficient than cross validation.

Lindquist et al. (2013) offer a thorough critique of the ten rules, and
in a rejoinder, Friston (2013) graciously concedes many of the points

raised in their paper and in a more narrowly focused comment by
Ingre (2013). He does, however, expand on several points that remain
in dispute, and prominent among these is the role of cross-validation
as highlighted by rule 7.

This note aims (i) to clarify why cross-validation scores, and other
measures of prediction accuracy, have come to play a role in hypothesis
testing for predictive models in neuroimaging and other fields; and (ii)
to show that tests constructed in this way need not be suboptimal as
asserted by Friston, and indeed can fulfill inferential needs that are not
met by classical methods. Friston has raised some concerns that are
well worth discussing; even so, I hope to demonstrate that the more
cogent argument in the above hypothetical exchange is that of the
reviewer.

Whereas Prof. Friston's initial paper adopted the unusual device of
an ironic presentation, I have aimed here for a discussion that is irenic,
i.e., seeking to reconcile differing viewpoints—an important desidera-
tum in a multidisciplinary field such as neuroimaging. A clear under-
standing of the issues at hand requires not only that we bring together
the viewpoints of statisticians and of neuroimagers who make heavy
use of statistics; but also that we bring together classical, likelihood-
oriented statistical theory and newer, prediction-oriented machine
learning approaches.

A class of tests, and a simple example

While Friston's critique focused on cross-validation (CV), it seems
reasonable to broaden the discussion somewhat. The class of tests in
question seeks to assess whether a predictive model achieves better-
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than-chance performance (see Golub et al., 1999, for an early example).
To do this, one needs (i) a measure of performance, and (ii) an esti-
mate of the chance (null) distribution of this measure. The perfor-
mance measure (i) is usually an estimate of prediction error, which
is most often provided by a CV score, such as misclassification rate
or area under the ROC curve for left-out data. But in some cases anoth-
er score, such as the Akaike (1973) information criterion, might serve
as the prediction error metric. For (ii), a binomial distribution is some-
times used as a null distribution for the number of misclassifications.
This, however, may entail serious bias due to ignoring the dependence
structure of the data (Noirhomme et al., 2014). This pitfall can be
avoided by the more generally applicable approach of using permuted
data sets to simulate the null distribution of the performance measure
(see Nichols and Holmes, 2001, for an introduction to permutation
testing in neuroimaging). In what follows, then, I will sometimes
refer to a broader category of predictive performance permutation
tests, or “P3 tests,” which may or may not adopt a CV score as the per-
formance measure.

While classification problems seem to be the most popular class of
predictive or “decoding” analyses in neuroimaging, analyses with con-
tinuous outcomes have become increasingly popular (Cohen et al.,
2011) and will serve here as a running example. Consider n observa-
tions (x1, y1),…, (xn, yn), with the responses yi generated from

yi ¼ β0 þ
Xp−1

k¼1

βkxik þ εi; ð1Þ

where the εi's are independent and identically distributed (IID) with zero
mean and finite variance. Alternatively we can write yi = β0 + xiTβ+ εi
where xi=(1, xi1,…, xi,p − 1)T and β=(β0, β1,…, βp − 1)T. For example,
y may denote a pain score. In a classical, low-dimensional setting, the
predictors x may be demographic factors such as age and sex. In a high-
dimensional scenario of a sort that is increasingly popular in neuroimag-
ing, the predictor vector refers to a quantity,measured by an imagingmo-
dality at each of a set of regions of interest, whichmay predict or “encode”
the response (pain). Either way, we wish to test the null hypothesis

H0 : β1 ¼ … ¼ βp−1 ¼ 0 ð2Þ

versus the alternative H1 : βk ≠ 0 for some k ∈ {1,…, p− 1}.
A CV-based P3 test might proceed as follows. Intuitively, if we have a

good procedure for estimating β, then if we apply this procedure to the
entire data set except for one observation, then the resulting estimate

will do a good job of predicting the left-out response. Let β̂−i be the es-
timate obtained with the ith observation (xi, yi) excluded; the ensuing

predicted value for the ith response is ŷi;−i≡xTi β̂−i . The overall quality
of such predictions can be gauged by the cross-validated sumof squared
residuals

s ¼
Xn
i¼1

yi−ŷi;−i

� �2 ¼
Xn
i¼1

yi−xTi β̂−i

� �2
: ð3Þ

If the observed value of the CV score (Eq. (3)) is smaller than we would
expect underH0—in other words, if it lies in the left tail of the null distri-
bution of Eq. (3)—then this constitutes evidence against H0.2

To simulate the null distribution, we can choose a large number of
permutations, say π1, …, πM, of {1, …, n}, and create artificial data sets

by applying these permutations to the responses: the mth such data
set is

x1; yπm 1ð Þ
� �

;…; xn; yπm nð Þ
� �

: ð4Þ

Let β̂
πm

−i be the estimate obtained from the mth transformed data set
with its ith observation left out. The observed distribution of the

permuted-data CV score sπm ¼ ∑n
i¼1 yπm ið Þ−xTi β̂

πm

−i

� �2
(m = 1, …, M)

serves as a simulated null distribution of Eq. (3), and the p-value is
given by

# m : sπmbsf g þ 1
M þ 1

:

Adding 1 to the numerator and denominator is equivalent to includ-
ing the original statistic value in the permutation distribution, as
required to obtain a valid test (see Phipson and Smyth, 2010).

To see why the empirical distribution of sπ1 ;…; sπM mirrors the null
distribution, observe that if H0 is true, then y1, …, yn are simply IID
with mean β0 and variance σ2. Thus under H0, the permuted data
(Eq. (4)) arise from the same distribution as the original data, and
hence sπ1 ;…; sπM arise from the same distribution as s.

The above is just one simple example of a very general technique. In
other P3 tests, linear regression might be replaced by support vector
machines or other predictive algorithms; and the squared error loss
could be replaced by other loss functions, or more general measures of
performance on left-out data. More general treatments can be found
in Golland and Fischl (2003) and Ojala and Garriga (2010).

Why not just use a likelihood ratio test?

As we saw in the Introduction, Friston (2012) appeals to the funda-
mental lemma of Neyman and Pearson (1933) (hereafter, the NP
Lemma) to argue against CV-based tests. Prof. Friston has provided
two explanations of how the NP Lemma applies. In a footnote to the
above-cited remark on rule 7 (Friston, 2012), he writes: “Inferences
based upon cross validation tests (e.g., accuracy or classification perfor-
mance) are not likelihood ratio tests because, by definition, they are not
functions of the complete data whose likelihood is assessed. Therefore,
by the Neyman–Pearson Lemma, they are less powerful.”3

In his rejoinder, Friston (2013) elaborates on how CV is used for hy-
pothesis testing in neuroimaging, and then offers a somewhat different
explanation of how the NP Lemma applies: “For example, do the voxels
inmyhippocampal volume of interest encode the novelty of a particular
stimulus? To answer this question one has to convert the cross valida-
tion scheme into a hypothesis testing scheme—generally by testing
the point null hypothesis that the classification accuracy is at chance
levels. It is this particular application that is suboptimal. The proof is
straightforward: if a test of classification accuracy gives a different p-
value from the standard log likelihood ratio test then it is—by the
Neyman–Pearson Lemma—suboptimal. In short, a significant classifica-
tion accuracy based upon cross validation is not an appropriate proxy
for hypothesis testing. It is in this (restricted) sense that the Neyman–
Pearson Lemma comes into play.”

There are two fundamental problems with these appeals to the NP
Lemma. The first problem was pointed out by Lindquist et al. (2013)
and acknowledged by Friston (2013), but calls for further elaboration.

2 In practice, rather than leave-one-out CV as described here and in Appendix C, K-fold
CV is typically used—resulting in computational savings that are particularly helpful when
CV is combined with permutation. Hastie et al. (2009) recommend K=5 or 10, which of-
fers a favorable bias-variance tradeoff.

3 Note that the CV-based test developed above does use all the data formodel fitting (al-
though each training set fit does not). This advantage of CV over reserving part of the data
solely for validation was noted by Simon et al. (2003).
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