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18In lifespan studies, large within-group heterogeneity with regard to behavioral and neuronal data is observed.
19This casts doubt on the validity of group-statistics-based approaches to understand age-related changes on
20cognitive and neural levels. Recent progress in brain–computer interface research demonstrates the potential
21ofmachine learning techniques to derive reliable person-specificmodels, representing brain behaviormappings.
22The present study now proposes a supervised learning approach to derive person-specific models for the
23identification and quantification of interindividual differences in oscillatory EEG responses related to working
24memory selection and maintenance mechanisms in a heterogeneous lifespan sample. EEG data were used to
25discriminate different levels of working memory load and the focus of visual attention. We demonstrate that
26our approach leads to person-specific models with better discrimination performance compared to classical
27person-nonspecific models. We show how these models can be interpreted both on an individual as well as on
28a group level. One of the key findings is that, with regard to the time dimension, the between-person variance
29of the obtained person-specific models is smaller in older than in younger adults. This is contrary to what we
30expected because of increased behavioral and neuronal heterogeneity in older adults.

31 © 2015 Elsevier Inc. All rights reserved.
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36 Introduction

37 Across the lifespan, working memory (WM) performance and the
38 underlying mechanisms of selection and maintenance undergo a
39 tremendous change (Sander et al., 2012a). On the behavioral level, an
40 increase in performance across childhood with a peak in young adult-
41 hood is followed by decline with advancing age. On the neural level,
42 WM performance depends, among others, on rhythmic neural activity
43 in the alpha band (8–12Hz) (e.g., Freunberger et al., 2011). In particular,
44 posterior alpha (8–12 Hz) power changes have been related to atten-
45 tional shifts and WM load during retention (e.g., Obleser et al., 2012;
46 Sander et al., 2012b; Sauseng et al., 2009). Given lowWM performance

47in children and older adults, altered mechanisms of rhythmic neural
48processing are to be expected in these age groups. However, evidence
49on age-related changes in rhythmic neural activity related to WM
50maintenance and selection is scarce, and results are mixed. Some
51studies have found evidence for age-differential attentional effects on
52the modulation of alpha power (Sander et al., 2012b), whereas others
53did not observe any attention-related modulation in older adults
54(Vaden et al., 2012).
55One possible explanation for the mixed results may be increased
56heterogeneity in children and older adults. Implicit to inferring cogni-
57tive and neural processes from group data is the strong and necessary
58(but not sufficient) assumption that the process under investigation is
59equivalent for every group member. Hence, group homogeneity is cru-
60cial for making links between cognitive and neural data. Consequently,
61conclusions about processes from the sample-specific level to the
62person-specific level are valid only under the ergodic assumption
63(Molenaar, 2004). Ergodicity assumptions are typically violated for
64developmental processes, and, in these cases, it is necessary to base
65analyses on intraindividual variability rather than on interindividual
66change. As a result, inferences on the individual level may be diluted if
67not meaningless (e.g., Hayes, 1953; Molenaar and Campbell, 2009;
68Nesselroade et al., 2007; Siegler, 1987; Voelkle et al., 2014).
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69 Thus, increased interindividual variability in developmental popula-
70 tions may cast doubt on the validity of group statistics, and calls for the
71 development of analyses based on intraindividual instead of interindi-
72 vidualmodels (e.g., Nesselroade et al., 2007). The high reliability and re-
73 producibility of behavioral, as well as structural and functional brain
74 measures in younger adults suggest reasonable homogeneity of this
75 group. However, widespread changes in brain chemistry, anatomy,
76 and functionality are documented, especially for child development
77 and aging (e.g., Bäckman et al., 2006; Raz et al., 2005). These changes
78 are typically accompanied by increased heterogeneity of functioning
79 in behavioral tasks (e.g., Astle and Scerif, 2011; Nagel et al., 2009;
80 Werkle-Bergner et al., 2012). Hence, especially for cross-sectional com-
81 parative studies, onemay questionwhethermeaningful between-group
82 comparisons are feasible knowing that the within-group heterogeneity
83 is not equal across lifespan samples.
84 Here,we suggest usingwithin-subject pattern classification to better
85 understand lifespan age differences in oscillatory mechanisms of WM
86 selection and maintenance. More precisely, we propose a two-step
87 approach: First, person-specific models that explore the expected
88 relationship between brain responses and experimental conditions on
89 the individual level are estimated. For example, in the context of multi-
90 variate time-series analyses, this can be achieved by estimating person-
91 specific parameter estimates for a given model of interest (Nesselroade
92 et al., 2007). In a second step, invariance of the parameter estimates can
93 be tested within and across groups (Boker et al., 2009). Inspired by
94 those considerations, we propose a formal approach to derive person-
95 specific models for the identification of differential brain–behavior
96 links in lifespan samples.
97 In multi-channel electroencephalographic (EEG) recordings of brain
98 signals over time, a person-specific model that carries maximal infor-
99 mation about the discrimination of experimental conditions can vary
100 across several parameters: first and foremost, across time, duration,
101 channel, and frequency. The model space spanned by these parameters
102 is necessarily large and finding the most informative model is far from
103 trivial. Therefore, we formalize the problem as a classification task and
104 employ multivariate pattern classification algorithms (also know as
105 multivariate pattern analysis (MVPA) in the (f)MRI literature Norman
106 et al., 2006) in combination with a precisely tailored preprocessing
107 chain to obtain a solution. Similar approaches have been dominating
108 brain–computer interface (BCI) research. However, in many of these
109 applications, the predictive accuracy is the primary target of the proce-
110 dure rather than the inference about the underlying processes. Our
111 framework can be regarded as a supporting tool in the recursive inter-
112 play of theory-guided and exploratory analysis of neuroimaging data
113 that assists researchers in hypothesis generation and theory building
114 by extracting stable patterns from data (cf. Brandmaier et al., 2013). In
115 our work, we place a particular emphasis on interindividual differences
116 as typically encountered in lifespan and aging research.
117 To test the applicability of our approach, we re-analyze data from a
118 lifespan study that targeted brain oscillatorymechanisms forWMselec-
119 tion and WM maintenance in a lifespan sample including children,
120 younger, and older adults (Sander et al., 2012b). The study used a
121 color change-detection task (Vogel and Machizawa, 2004), in which
122 participants were cued to attend to either the left or the right hemifield
123 and asked to remember the colors of varying numbers of items. Hence,
124 by design, it is possible to identify modulations of rhythmic neural
125 responses that (a) relate to the attentional focus and (b) reflect the
126 varying levels of WM load. We operationalized (a) attentional focus as
127 the hemifield to which spatial attention should be shifted and (b) WM
128 load as the amount of items to be remembered in a change-detection
129 task. Hence, in a first step, we set out to predict the focus of visuospatial
130 attention based on changes in (posterior) alpha power. Wewill refer to
131 this as attentional focus prediction in the following. Given the robust re-
132 lation of posterior alpha power modulations and attention shifts
133 (e.g., Kelly et al., 2006; Sander et al., 2012b; Worden et al., 2000), this
134 analysis was intended as a validation step of our classification approach

135(e.g., (Bahramisharif et al., 2010; van Gerven and Jensen, 2009; Kelly
136et al., 2005, for previous BCI approaches). This part of the study aimed
137to demonstrate the feasibility of deriving person-specific models with
138varying spatio-temporal information in groups of children, younger,
139and older adults. In a second step, we aimed to predict information
140maintained in WM based on single-trial modulations of neural activity
141in the alpha range. We will refer to this as WM load prediction in the
142following. Previous studies have successfully demonstrated load
143modulations of lateralized alpha power activity (Sauseng et al., 2009).
144However, given that studies demonstrating the possibility of WM load
145prediction from scalp EEG recordings are scarce (but see Roux et al.,
1462012, for an analysis of source activity in pre-identified regions), this
147part represents an extension of the applicability of our classification
148approach.

149Material and methods

150Identifying person-specific models: the classification approach

151The core idea of our framework is the derivation of person-specific
152models that optimally discriminate between behavioral conditions
153and, thus, allow evaluation of the neural underpinnings of interindivid-
154ual differences in behavioral responses. Here, the term model is used to
155refer to both a class ofmodels (representing a particular functional form
156with unknown parameters) and a particular instance of a model with
157parameters estimated from data. Whenever the distinction is not clear
158from the context, we refer to the latter as an estimated model. Person-
159specific models are estimated models selected from a set of candidate
160models that vary across multiple dimensions of the observed data
161space. In electroencephalography (EEG), this space typically entails
162electrode channels, time points, and/or frequencies; but our consider-
163ations generally apply to any spatio-temporal method of brain imaging.
164Candidate models can be derived from a template model class and vary
165parametrically according to multiple dimensions, first and foremost, to
166the spatio-temporal segments of the original data they are exposed to.
167In particular, models operate on different timewindows and on subsets
168of channels or their geometric projections. In the remainder of this sub-
169section we will describe the proposed framework to estimate person-
170specific models.
171In the following, the number of measured variables per sample will
172be denoted by M and the number of samples per individual will be de-
173noted by T, as those typically refer to samples ordered in time. For
174each person, a data set (xt, yt) ∈ D with t ∈ {1, …, T} is measured,
175which is a set of tuples of observed brain responses xt∈ℝM and a corre-
176sponding dichotomous target variable yt ∈ {0, 1} that typically corre-
177sponds to a given external condition, task, or state. A candidate model,
178mapping brain responses to the target variables, can then be conceived
179as a θ-parameterized function fθ(x) = y, linking the observed neural re-
180sponses xt and behavioral states yt. The specific parameters θ can be es-
181timated by minimizing a loss function on data (usually called the
182training set). Each estimated model can then be evaluated with respect
183to its accuracy in predicting a behavioral condition from brain re-
184sponses, whereby selection of the bestmodel is carried out for each per-
185son separately. We propose to use the balanced accuracy (BAC), a loss
186function accounting for unbalanced target variables that are often en-
187countered in EEG data sets, as the performancemeasure for each candi-
188date model. The BAC is the average of the accuracies obtained for each
189target variable state (condition) (Brodersen et al., 2010). This metric
190allows us to select the best of all competing models and interpret the
191idiosyncratic brain-space information of that model as person-specific
192information.
193To avoid an overoptimistic bias by confounding parameter estima-
194tion and model evaluation (Kriegeskorte et al., 2009; Stone, 1974), we
195estimate the BAC for a given candidate model using 10-fold stratified
196cross-validation (Kohavi et al., 1995). The resulting person-specific
197models can be interpreted as both a measure of interindividual
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