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This paper provides a new method for model-based estimation of intra-cortical connectivity from
electrophysiological measurements. A novel closed-form solution for the connectivity function of the Amari neu-
ral field equations is derived as a function of electrophysiological observations. The resultant intra-cortical con-
nectivity estimate is driven from experimental data, but constrained by the mesoscopic neurodynamics that
are encoded in the computational model. A demonstration is provided to show how the method can be used
to image physiological mechanisms that govern cortical dynamics, which are normally hidden in clinical data
from epilepsy patients. Accurate estimation performance is demonstrated using synthetic data. Following the
computational testing, results from patient data are obtained that indicate a dominant increase in surround inhi-
bition prior to seizure onset that subsides in the cases when the seizures spread.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

The human brain is arguably nature's most complex system. The
development and validation of a theory that underpins its function is
one of the greatest challenges faced by scientists today. This great
challenge is being addressed by both the experimental and theoretical
neuroscience communities. The experimental neuroscience community
is generating an ever increasing number of facts, describing the interac-
tion betweenmanipulations and observations. The theoretical neurosci-
ence community is developing mathematical models that can explain
generators of data and make non-trivial predictions about system be-
havior (to be validated by experiments). To date, neither approach has
been successful in developing an understanding of high-level brain
function. Continuously accumulating more facts has not brought us
closer to an understanding of what appears to be emergent phenomena
in the brain. Understanding such phenomena requires the development
and acceptance of theory. However, theoretical developments have
been limited by the inability to accurately measure model parameters

and account for inter-subject variability. This has led to mathematical
models that are either over-parameterized or overly-simplified. Over-
parameterized models often provide ambiguous explanations of data
leading to misleading theories. Overly-simple models can be useful
in certain applications, but can often neglect important aspects of the
underlying biology.

An opportunity to overcome the challenges mentioned above has
arisen with the advent of data-driven neural modeling. Data-driven
modeling is a process of a creating a subject-specific mathematical
model of a particular subject or experimental preparation. The model
is constrained by known relationships and general principles that are
described bymathematical functions,where theparameters of the func-
tions are considered unknown. For example, an excitatory post-synaptic
potential will have a fast rise time (from synaptic dynamics) and a
slower decay time (from membrane dynamics) that is described by

h tð Þ ¼ α exp −
t
ts

� �
−exp −

t
tm

� �� �
; ð1Þ

where α is a synaptic gain parameter and ts b tm are the synaptic and
membrane time constants, respectively. The form of the synaptic
response function (or kernel due to the convolution in time) is well
accepted. However, the parameters are known to vary across subjects,
brain regions, and neural population types and thus need to either
measured or inferred from data to create accurate models.
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Similarly, the probability that a neuron at position r connects with a
neighbor at position r′ decreases as the distance, r − r′, increases. This
motivates the shape of connectivity functions (or kernels due to the
convolution in space) that are used to describe neural fields, such as
Amari’s model (Amari, 1977) that has the form

w r− r0ð Þ ¼
X
n
θn exp −

r− r0ð ÞΤ r− r0ð Þ
σn

 !
; ð2Þ

where θn are the parameters that describe the effective connectivity
strength of excitatory (n = e) and inhibitory (n = i) connections, and
σn specifies the axonal–dendritic range. The form of the connectivity
function is well accepted in the literature and gives rise to important
phenomena, such as tuning of cortical regions to receptive fields.
However, as for the case with the post-synaptic response function in
Eq. (1), the parameters are subject-specific.

There are several data-driven frameworks recently presented in the
literature (Friston et al., 2003; Schiff and Sauer, 2008; Ullah and Schiff,
2010; Sedigh-Sarvestani et al., 2012; Pinotsis et al., 2013; Gorzelic
et al., 2013; Turner et al., 2013; Aram et al., 2012; Freestone et al.,
2011, 2013, 2014). These frameworks utilize system identification
techniques to solve the problem of inferring parameters from data.
They have demonstrated great potential in furthering our under-
standing of the function and structure of neural circuits. Moreover,
data-driven models provide new opportunities in the field of neural
engineering to incorporate control and systems theory to optimize
therapeutic bionic devices (Schiff, 2011).

Perhaps the most limiting factor in the widespread adoption of
data-driven modeling frameworks is the high level of complexity
of the estimation algorithms. It is often the case with complicated
algorithms that the results are clouded by a lack of understanding of
the methods involved. Furthermore, the high level of complexity has
led to the inappropriate application of data-driven methods to certain
problems. Therefore, the development of methods that do not rely on
complicated, iterative algorithms represents a significant contribution
to neuroscience.

This paper provides a method for data-driven neural field modeling
that does not rely on complicated, computationally intense estimation
algorithms. The output of the method is an estimate of an intra-
cortical connectivity function that can be computed in closed-form
from local field potential or other high-resolution electrophysiological
measurements. The estimated connectivity function is based on the
assumption that the mean field dynamics of the cortex is governed by
Amari-style neuralfield equations (Amari, 1977), where the parameters
are not known. The dynamics of thismodel are governed by the connec-
tivity function, which physically describes the statistics of the axonal–
dendritic projections. Computationally, the shape of the connectivity
function strongly dictates the type of dynamics that the cortical field
can exhibit.

Results from data-driven mesoscopic neural modeling frameworks
must be interpreted with care. A common misconception is that the
variables that are estimated have a direct one-to-one correspondence
to the actual brain. This is not the case. The resultant models are far
less complex than the actual brain. Accordingly, parameter estimates
must be interpreted as being constrained by the models. This is not to
say that the models are not related to actual neural dynamics or that
valuable insights cannot be gained. In actual fact, mesoscopic models
are leading to new hypotheses about many types of phenomena.
Furthermore, the constraints that themodels place on the data facilitate
the estimation of variables that are normally hidden in experimental
observations.

The rest of this paper is set out as follows. In the Methods section,
the stochastic Amari neural field model is briefly reviewed. Then
necessary formulations for the intra-cortical connectivity estimator
are provided. This is followed by the data collection approach and

the pre-processing steps. The Results section provides examples
using synthetic data that demonstrate the estimation performance
with known parameters. Following this, results using recorded intra-
cranial electroencephalogram (iEEG) data over normal, seizure, and
post-seizure periods are presented. Finally, in the Discussion section,
the implications and limitations of this method as well as possible
future extensions are discussed. All frequently used symbols in the
following sections are given in Table 1.

Methods

Neural field model

This manuscript presents a new method for inferring the underlying
connectivity structure of cortex with the assumption that the cortical dy-
namics of interest are governed by physical laws described by the neural
field model of Amari (1977). The single layer Amari neural field model is

v t; rð Þ ¼
Z t

−∞
h t− t0ð Þ

Z
Ω
w r− r0ð Þ f v t0; r0ð Þð Þdr0 þ p t0; rð Þ

� �
dt0: ð3Þ

The spatial dynamics are governed by the connectivity function,
w(r), that collects all the presynaptic firing rates that drive the field of
postsynaptic potentials, v(t, r), and r ∈ Ω ⊂ ℝn are spatial locations in
n-dimensional physical space, n ∈ {1, 2, 3}. The temporal dynamics are
governed by the post-synaptic response function, h(t), acting on action
potentials and the external inputs arriving from other neural popula-
tions. The term p(t, r) denotes external inputs. The relationship between
the presynaptic mean membrane potential, and the presynaptic mean
firing rate is typically described by a sigmoid function in generative
neural population models. The sigmoidal relationship is

f v t; rð Þð Þ ¼ fmax

1þ exp ς v0 − v t; rð Þð Þð Þ ; ð4Þ

where fmax is the maximum firing rate, v0 describes the mean firing
threshold relative to the restingmembrane potential and the parameter
ς defines the steepness of the sigmoid at v0 (also specifies variability of
firing thresholds).

Table 1
Notation. The symbols, description of the quantity, and the SI units where relevant.

Symbol Quantity Units

DomainΩ Spatial domain n.a.
ℤ+ Non-negative integers n.a.
ℝn n-Dimensional real numbers n.a.
r Spatial location [mm, mm]
t Time s

Model
yt(rij) Electrophysiological measurement mV
vt(r) Mean membrane potential field mV
f(v(r)) Activation function spike s−1

f̂ ðvðrÞÞ Linearized activation function spike s−1

et(r) Field disturbance, with covariance function γ(r) mV
εt(rij) Observation noise, with covariance matrix Σε mV
m(rij) Observation function, where i = 1, …, I and j = 1, … J n.a.
w(r) Connectivity function mV spike−1

ψi(r) Connectivity basis functions n.a.
θi Weights of the connectivity basis functions mV spike−1

μi Centers of the connectivity basis functions mm
σi Widths of the connectivity basis functions mm

Estimationτ Spatial shift mmν Spatial frequency cycles/mm
ytd Differential re-referenced observations along j-direction mV
R(τ) Spatial correlation mV2

SðνÞ Power spectral density mV2 mm/cycles
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