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We introduce STOUT (spatio-temporal unifying tomography), a novel method for the source analysis of
electroencephalograpic (EEG) recordings, which is based on a physiologically-motivated source representation.
Our method assumes that only a small number of brain sources are active throughout a measurement, where
each of the sources exhibits focal (smooth but localized) characteristics in space, time and frequency. This
structure is enforced through an expansion of the source current density into appropriate spatio-temporal
basis functions in combination with sparsity constraints. This approach combines the main strengths of two
existing methods, namely Sparse Basis Field Expansions (Haufe et al., 2011) and Time–Frequency Mixed-Norm
Estimates (Gramfort et al., 2013). By adjusting the ratio between two regularization terms, STOUT is capable of
trading temporal for spatial reconstruction accuracy and vice versa, depending on the requirements of specific
analyses and the provided data. Due to allowing for non-stationary source activations, STOUT is particularly
suited for the localization of event-related potentials (ERP) and other evoked brain activity. We demonstrate
its performance on simulated ERP data for varying signal-to-noise ratios and numbers of active sources. Our anal-
ysis of the generators of visual and auditory evokedN200potentials reveals that themost active sources originate
in the temporal and occipital lobes, in line with the literature on sensory processing.

© 2015 Elsevier Inc. All rights reserved.

Introduction

In recent years, the advances in Neuroscience have led to a better
understanding of cognitive processes in the human brain. One general
goal is to identify brain areas related to certain cognitive processes or
pathologies through measurements. Methods allowing for such kind
of analyses are called neuroimaging techniques.

At the same time, it is also of importance to identify and characterize
temporal brain activation patterns related to the cognitive phenomena
under study. Magneto- and electroencephalography (MEG and EEG)

have been widely used to study brain dynamics by identifying and ana-
lyzing temporal activation patterns, e.g., neural rhythms, event-related
potentials (ERP), epileptic spikes, among others (e. g., Michel et al.,
2004; Galka et al., 2004; Blankertz et al., 2011). M/EEG recordings also
contain spatial information, because they are usually measured over
the entire scalp using up to a few hundred sensors. Consequently, EEG
and MEG have also been used as neuroimaging techniques (e. g.,
Zwoliński et al., 2010; Baillet et al., 2001; Toga and Mazziotta, 2002).
While most of the considerations made here equally apply to MEG, we
restrict the discussion to EEG in the following.

The pyramidal neurons believed to account for most of the EEG
signal populate the entire cortical gray matter, and outnumber the
available sensors by several orders of magnitude. Methods for estimat-
ing the generators of EEG activity therefore need to consider at least a
few thousand potentially contributing brain sites as potential sources,
which may be distributed evenly across the brain, or restricted to the
cortical gray matter. Estimating the source distribution of brain electri-
cal activity based on EEG measurements therefore amounts to solving
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an ill-posed and mathematically underdetermined inverse problem,
where a unique solution can only be obtained by making additional as-
sumptions (Baillet et al., 2001; Galka et al., 2004; Grech et al., 2008;
Babadi et al., 2014). This can for example be done by way means of in-
troducingprior beliefs on the structure of possible source configurations
in a Bayesian inference framework (Nummenmaa et al., 2007).

With respect to neurophysiological plausibility, it has been argued
that solutions with a simple spatial structure may be favored. There
are various algorithmic approaches to enforce simplicity. The minimum
norm estimate (MNE, Hämäläinen and Ilmoniemi, 1994), for example,
minimizes the overall power of the sources, whereas the Low
Resolution Tomography estimate (LORETA, Pascual-Marqui et al.,
1994) explicitly enforces spatial smoothness of the sources based on
the argument that neighboring voxels should be similarly active. Tech-
nically, both approaches can be implemented using ‘2-norm penalties.
On the other hand, it has also been argued that, in event-related exper-
imental designs, only a small fraction of the brain should be consistently
activated. Consequently, methods assuming sparsity in the spatial
domain have been proposed (Gorodnitsky et al., 1995; Matsuura and
Okabe, 1995; Grech et al., 2008; Bolstad et al., 2009; Wipf and
Nagarajan, 2009; Ou et al., 2008). Sparse methods are often based on
the minimization of ‘1-norm regularization terms or, in a more general
sense, on the minimization of the volume spanned by the active coeffi-
cients of the sources.

While being physiologicallymotivated, all these solutions practically
suffer from undesired properties, which include spatial blurring—and
the resulting inability to spatially separate multiple sources—, the
presence of so-called ghost sources for minimum ‘2-norm solutions, as
well as instability and spatial scattering for minimum ‘1-norm solutions
(Haufe et al., 2008b, 2011; Grech et al., 2008; Tibshirani, 1994). To over-
come these issues, several authors have proposed to combine spatial
smoothness and sparsity to obtain focal source activations, be it through
a combination of penalty terms (see Haufe et al., 2008a,b;
Vega-Hernández et al., 2008), or through representing brain activity as
the sum of a small number of spatial basis functions describing smooth
localized patches of potentially active brain regions (Friston et al., 2008;
Haufe et al., 2008a, 2011).

Besides enforcing a preferred spatial structure, prior information
may also be included in the form of temporal constraints describing
dynamics of neural activity. Specifically, it has been shown that
time-frequency representations provide insightful information
about the dynamics of neural processes (Miwakeichi et al., 2004;
Durka et al., 2005; Trujillo-Barreto et al., 2008; Gramfort et al.,
2013). Generally, brain activity may be non-stationary (e. g., event-
related), which is not taken into account by classical methods. In
contrast, Gramfort et al. (2013) address the non-stationarity issue
by representing brain activity through a sparse set of time-
frequency basis functions (atoms).

The vast majority of inversemethods for neuroimaging employ con-
straints either in the spatial or temporal domain, but not simultaneously
in both domains. Thus, some methods are able to accurately describe
non-stationary brain activations (e. g., Gramfort et al., 2013, TF-
MxNE), but their solutions may be too focal; that is, solutions are not
composed of smooth activation patches, but of non-contiguous spikes
of activation. The opposite holds for other methods (e. g., Haufe et al.,
2011, S-FLEX) that enforce spatial focality while being unable to de-
scribe non-stationary brain activations. Here, we propose to fill this
gap by enforcing neurophysiologically motivated structure both in
time and space, and thereby to unify the advantages of S-FLEX and
TF-MxNE. Precisely, we propose a spatio-temporal decomposition of
source activations, which depends on three components: (1) a
predefined dictionary of spatial basis fields, (2) a predefined dictionary
of temporal basis functions, and (3) a matrix of spatio-temporal coeffi-
cients that needs to be estimated. By adopting spatial and temporal
“dictionaries” from Gramfort et al. (2013) and Haufe et al. (2011), our
method — termed spatio-temporal unifying tomography (STOUT) — is

able to reconstruct the time courses of potentially non-stationary source
activations with focal spatial topographies. Moreover, by enforcing
sparse structure through a weighted combination of spatial and tem-
poral penalty terms, our method is able to “trade” spatial focality for
a simpler time-frequency representation, and vice versa. This
tradeoff is quantified by a single hyperparameter that allows to ac-
cess to an entire spectrum of solutions ranging between S-FLEX and
TF-MxNE.

The present manuscript is organized as follows. In the Methods sec-
tion, we give an introduction to the EEG inverse problem and present
existing solutions as well as our novel source imaging method STOUT.
In the Experiments and Results sections, we assess the reconstruction
of simulated ERP activity using STOUT as compared to state-of-the-art
source imaging approaches. We also apply STOUT to real EEG data,
where the task is to localize the generators of auditory and visual
evoked potentials recorded during an oddball experiment. Then, we
discuss the properties of our method in the Discussion section, and
conclude our contributions in the Conclusion section.

Methods

EEG forward and inverse problem

The electromagnetic field measured by EEG may be represented by
the following linear model (Baillet et al., 2001; Grech et al., 2008):

Y ¼ LJ þ �: ð1Þ

Here, Y∈ℝNc�Nt is the EEG data measured at a set of Nc sensors at Nt

time points, J∈ℝ3Nd�Nt (termed the current density) is the corresponding
brain source activitymatrix holding the 3D current vectors ofNd dipolar
electrical brain sources at the Nt time points, and L∈ℝNc�3Nd (the lead
field) is a gainmatrix representing the relationship between the current
sources J and the measured EEG data Y, composed as L = [Lx, Ly, Lz],
where the matrices Lx/y/z are the lead fields of the current sources in
each direction x, y and z, respectively. We also assume that Y is affected
by Gaussian distributed noise �∈ℝNc�Nt with covariance cov �ð Þ ¼
Q �∈ℝ

Nc�Nc , where Q � is the noise covariance matrix. In practice, Q �

can be estimated from data using baseline measurements (Nagarajan
et al., 2007), be derived from the leadfield (assuming i.i.d. source activa-
tions), or simply set to the identitymatrix. The latter approach is applied
in the present work. Under this model, the maximum a-posteriori
(MAP) estimate of J can be found as the minimizer of the following
cost function, which is composed of a quadratic error term and a regu-
larization term (Grech et al., 2008):

argmin
J

jjY−LJjj2Q �
þ λΘ Jð Þ

n o
: ð2Þ

Here, Pk kQ �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr PΤQ �

−1P
n or

denotes the Mahalanobis distance,

λ ∈ ℝ+ is a regularization constant, and Θ( J) ∈ ℝ+ is a function which
formalizes the constraints that are imposed upon the source activity.

Existing inverse solutions

The penalty function Θ( J) is commonly used to promote solutions
with a certain spatial or temporal structure. Solution with purely
smooth as well as purely sparse source activations have been argued
to be neurophysiologically plausible (Hämäläinen and Ilmoniemi,
1994; Pascual-Marqui et al., 1994; Gorodnitsky et al., 1995; Matsuura
and Okabe, 1995). An example of a spatially smooth method is the
Low Resolution Tomography (LORETA) estimate (Pascual-Marqui
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