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Whole-brain network analyses remain the vanguard in neuroimaging research, coming to prominence within
the last decade. Network science approaches have facilitated these analyses and allowed examining the brain
as an integrated system. However, statistical methods for modeling and comparing groups of networks have
lagged behind. Fusingmultivariate statistical approacheswith network science presents the best path to develop
these methods. Toward this end, we propose a two-part mixed-effects modeling framework that allows model-
ing both the probability of a connection (presence/absence of an edge) and the strength of a connection if it
exists. Models within this framework enable quantifying the relationship between an outcome (e.g., disease
status) and connectivity patterns in the brain while reducing spurious correlations through inclusion of con-
founding covariates. They also enable prediction about an outcome based on connectivity structure and vice
versa, simulating networks to gain a better understanding of normal ranges of topological variability, and
thresholding networks leveraging group information. Thus, they provide a comprehensive approach to studying
system level brain properties to further our understanding of normal and abnormal brain function.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Whole-brain functional magnetic resonance imaging (fMRI) net-
work analyses have moved to the forefront of neuroimaging research
over the last decade. fMRImeasures localized brain activity by capturing
changes in blood flow and oxygenation via the blood oxygen level-
dependent (BOLD) contrast (Ogawa et al., 1990). These measurements
are recorded from cubic subdivisions of the brain roughly a fewmillime-
ters in size called voxels. Averaging the BOLD signal time series across
voxels within specified regions provides coarser representations. Func-
tional connectivity analysis (FC) examines functional similarities be-
tween time series pairs in specified voxels or regions (Sporns, 2010;
Biswal et al., 1995; Friston, 1994). Functional brain network analysis
serves as a distinct subfield of connectivity analysis in which functional
associations are quantified for all n time series pairs to create an inter-
connected representation of the brain (a brain network). The resulting
n × n connection matrix is generally thresholded to create a binary
adjacency matrix that retains “significant” connections while removing
weaker ones.Weighted (continuous) network analyses, whichwe focus
on here, have gained traction but still lag behind due to computational
and methodological challenges they pose (Telesford et al., 2011;

Rubinov and Sporns, 2011; Ginestet et al., 2011). The connectionmatrix
is still often thresholded to remove negative connections (for reasons
noted in Telesford et al., 2011; M. Cao et al., 2014; and others) and/or
weak connections in the continuous case. A schematic exhibiting this
network generation process is presented in Fig. 1.

This emerging area of fMRI brain network analysis allows studying
the brain as a system, providing profound clinical insight into the link
between system level properties and behavioral and health outcomes
(Biswal et al., 2010; Sporns, 2010; Bullmore and Sporns, 2009; Bassett
and Bullmore, 2009). The application of network science (an interdisci-
plinary offshoot of graph theory) has facilitated these analyses and our
understanding of how the brain is structurally and functionally orga-
nized. Both binary and weighted versions of graph metrics such as
degree, clustering coefficient, path length, efficiency, centrality, and
modularity serve as common descriptive topological properties of inter-
est. While network science has catalyzed a paradigmatic shift in neuro-
science, methods for statistically modeling and comparing groups of
networks have lagged behind (Simpson et al., 2013a). These compari-
sons have great appeal for researchers interested in gaining further
insight into complex brain function and how it changes across different
mental states and disease conditions. Most current approaches to
modeling and comparing brain networks either rely on a specific
extracted summary metric (e.g., clustering coefficient) which may lack
clinical use due to low sensitivity and specificity, or on mass-univariate
nodal or edge-based comparisons that ignore the inherent topological
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properties of the network while also yielding little power to determine
significance (Zalesky et al., 2010; Ginestet et al., 2014). While some uni-
variate approaches like the network-based statistic (NBS) (Zalesky et al.,
2010) have proven useful, gleaning deeper insights into normal and ab-
normal changes in complex functional organization demands methods
that leverage the wealth of data present in an entire brain network.
This systemic organization confers much of our brains' functional abili-
ties as functional connections may be lost due to an adverse health con-
dition but compensatory connections may develop as a result in order to
maintain organizational consistency and functional performance. Conse-
quently, brain network analysis necessitate a multivariate modeling
framework that allows assessing the effects ofmultiple variables of inter-
est and topological network features (e.g., demographics, disease status,
nodal clustering, nodal centrality, etc.) on the overall network structure.
That is, if we have

Data Y i : network of participant i
X i : covariate information metrics; demographics; etc:ð Þ

�

we want the ability to model the probability density function of the
network given the covariates P(Yi|Xi, θi), where θi are the parameters
that relate the covariates to the network structure.

More recent brain network comparison methods that attempt to
better exploit the topological features of network data include the
exponential random graph modeling framework (ERGM) (Simpson
et al., 2011, 2012), the permutation network framework (PNF)
(Simpson et al., 2013b), and the multivariate distance matrix regres-
sion (MDMR) framework (Shehzad et al., 2014). While all show prom-
ise, they lack the flexibility of the modeling and inferential tools
developed for fMRI activation data. The ERGM framework allows effi-
ciently representing complex network data and inherently accounts
for higher order dependence/topological properties, but multiple-
subject comparisons can pose problems given that these models were
originally developed for the modeling of one network at a time
(Simpson et al., 2011). Moreover, the amount of programming work in-
creases linearly with the number of subjects since ERGMsmust be fitted
and assessed for each subject individually (Simpson et al., 2012). Incor-
porating novel metrics (perhaps more rooted in brain biology) may be
difficult due to degeneracy issues that may arise (Handcock, 2002;
Rinaldo et al., 2009; O'Malley, 2013).Whilewell-suited for substructural
assessments, edge-level examinations remain difficult with these
models. Additionally, most ERGM developments have been for binary

networks; approaches for weighted networks have been proposed but
remain in their infancy (Krivitsky, 2012; Desmarais and Cranmer,
2012). The PNF approach enables comparing groups of brain networks
by assessing the topological consistency of key node sets within and be-
tween groups. However, it is a strictly inferential (andnotmodeling) ap-
proach, and thus precludes quantifying and predicting relationships
between disease outcomes and network structure, and simulating net-
work structure. Unlike the PNF, the MDMR framework allows control-
ling for confounding covariates in group comparisons via a “psuedo-F”
statistic; however, it too lacks the ability to simulate networks or make
predictions. It also fails to account for the dependence in connectivity
patterns across voxels.

To address the limitations of the current methods, we propose a
two-part mixed-effects modeling framework that allows modeling
both the probability of a connection (presence/absence of an edge)
and the strength of a connection if it exists. Models within this frame-
work enable quantifying the relationship between an outcome
(e.g., disease status) and connectivity patterns in the brain while reduc-
ing spurious correlations through inclusion of confounding covariates.
The models provide a means to test for overall group differences in
the strength and probability of network connections, group differences
in network topology, and individual edge differences (edge covariates
can be easily implemented in themodel) while accounting for the com-
plex dependence structures of the networks. They also enable predic-
tion about an outcome based on connectivity structure and vice versa,
simulating networks to gain a better understanding of normal ranges
of topological variability, and thresholding networks leveraging group
information. In short, this multivariate statistical and network scientific
fusion approach allows going beyond just reporting an omnibus group
comparison p-value and enables a more thorough examination of
system level properties.

Moreover, our framework provides the first baseline multivariate
brain network modeling approach, from which incremental modifica-
tions can be made going forward. As noted, current statistical methods
in brain network analysis focus on direct inference, comparing some
characteristic of two groups of networks. However, to our knowledge,
there is no framework that allowsmultivariatelymodeling theprobabil-
ity distribution of (weighted) networks as a function of endogenous
(network metrics) and exogenous (demographics, etc.) covariates
(i.e., a multivariate multiple regression approach). Thus, no compa-
rable alternatives currently exist. This lack of a baseline modeling
framework served as the impetus for our work. In addition to provid-
ing more appropriate group comparisons by accounting for the de-
pendence structure of the network and allowing the inclusion of
confounding covariates, the power of our approach is that in model-
ing network distributions, it is the only approach that allows explor-
ing the relationship between covariates and all network connections
simultaneously, predicting networks based on participant character-
istics, and simulating networks from themodeled distributions. Thus
our approach can be seen as providing a needed analytic foundation
and a complementary statistical tool to those that have been developed
thus far.

For the following discussion of the two-part mixed-effects modeling
framework, we describe the motivating data concerning age-related
cognitive decline in the next section. We then detail our modeling ap-
proach and its utility and use the aging data to illustrate the use of the
proposed framework. We conclude with a summary discussion includ-
ing planned future research.

Materials and methods

Motivating example

Our data come from a prior study that aimed to assess the neurolog-
ical underpinnings of age-related cognitive decline by examining the ef-
fects of aging on the integration of sensory information (Hugenschmidt

Fig. 1. Schematic for generating brain networks from fMRI time series data (partially recre-
ated from Simpson et al., 2013a; Fornito et al., 2012). Functional connectivity between brain
areas is estimated based on time series pairs to produce a connection matrix. A threshold is
commonly applied to the matrix to remove negative and/or “weak” connections.
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