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Heritability estimation has become an important tool for imaging genetics studies. The large number of voxel-
and vertex-wise measurements in imaging genetics studies presents a challenge both in terms of computational
intensity and the need to account for elevated false positive risk because of themultiple testing problem. There is
a gap in existing tools, as standard neuroimaging software cannot estimate heritability, and yet standard quanti-
tative genetics tools cannot provide essential neuroimaging inferences, like family-wise error corrected voxel-
wise or cluster-wiseP-values. Moreover, available heritability tools rely on P-values that can be inaccurate with
usual parametric inference methods.
In this work we develop fast estimation and inference procedures for voxel-wise heritability, drawing on recent
methodological results that simplify heritability likelihood computations (Blangero et al., 2013). We review the
family of score and Wald tests and propose novel inference methods based on explained sum of squares of an
auxiliary linear model. To address problems with inaccuracies with the standard results used to find P-values,
we propose four different permutation schemes to allow semi-parametric inference (parametric likelihood-
based estimation, non-parametric sampling distribution). In total, we evaluate 5 different significance tests for
heritability, with either asymptotic parametric or permutation-basedP-value computations. We identify a num-
ber of tests that are both computationally efficient and powerful, making them ideal candidates for heritability
studies in the massive data setting. We illustrate our method on fractional anisotropy measures in 859 subjects
from the Genetics of Brain Structure study.

© 2015 Published by Elsevier Inc.

Introduction

Combining neuroimaging data with genetic analyses is an increas-
ingly active area of research aimed at improving our understanding of
the genetic and environmental control over brain structure and function
in health and illness (see, e.g., Glahn et al., 2007). The foundation of any
genetic analysis is establishing that a trait is heritable, that is, that a sub-
stantial fraction of its variability can be explained by genetic factors. Sig-
nificant and reproducible heritability has been established for many
neuroimaging traits assessing brain structure and function, including,
for instance, location and strength of task-related brain activation
(Blokland et al., 2008; Koten et al., 2009; Matthews et al., 2007; Polk

et al., 2007), white matter integrity (Kochunov et al., 2014a, b;
Jahanshad et al., 2013; Brouwer et al., 2010; Chiang et al., 2009, 2011;
Kochunov et al., 2010), cortical and subcortical volumes, cortical thick-
ness and density (Winkler et al., 2010; Rimol et al., 2010; Kochunov
et al., 2011a, b; Kremen et al., 2010; den Braber et al., 2013).

Variance component models are the best-practice approach for
deriving heritability estimates based on familial data (Almasy and
Blangero, 1998; Blangero and Almasy, 1997; Amos, 1994; Hopper and
Mathews, 1982), for allowing great flexibility inmodeling of genetic ad-
ditive and dominance effects, as well as common and unique environ-
mental influences. The model also allows the inclusion of additional
terms that allow linkage analysis, yet remaining relatively simple and
requiring the estimation of only a few parameters. Estimation of param-
eters typically uses maximum likelihood under the assumption that the
additive error follows a multivariate normal distribution. The iterative
optimization of the likelihood function requires computationally
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intensive procedures, that are prone to convergence failures, something
particularly problematic when fitting data at every voxel/element.

Typically a likelihood ratio test (LRT) is used for heritability hypothesis
testing. As the null hypothesis value is on the boundary of the parameter
space, the asymptotic distribution of LRT is not χ2 with 1 degree of free-
dom(DF), but rather approximately as a 50:50mixture ofχ2 distributions
with 1 and 0 DF, where a 0 DFχ2 is a point mass at 0 (Chernoff, 1954; Self
and Liang, 1987; Stram and Lee, 1994; Dominicus et al., 2006; Verbeke
and Molenberghs, 2003). However, this result depends on the assump-
tion of independent and identically distributed (i.i.d.) data (Crainiceanu,
2008; Crainiceanu and Ruppert, 2004a, b, c), which is violated in the
heritability problem. It has been shown that 0 values occur at a rate great-
er than 50%, producing conservative inferences (Blangero et al., 2013;
Crainiceanu and Ruppert, 2004a; Shephard, 1993; Shephard and
Harvey, 1990).

As with most statistical models, the quantitative genetic models used
here are based on an assumption of multivariate Gaussianity, and this as-
sumption is the basis of the estimation and test procedures described
above. However, the heritability test statistic's null distributionmaybe in-
accurate even when Gaussianity is perfectly satisfied, due to the limita-
tions of the 50:50 χ2 result just mentioned. Further, for neuroimaging
spatial statistics, like family-wise error (FWE) corrected inferencewith ei-
ther voxel- or cluster-wise inference, the relevant parametric null distri-
butions are intractable. While random field theory (Worsley et al., 1992;
Friston et al., 1994; Nichols and Hayasaka, 2003) results exist for χ2 im-
ages (Cao, 1999), they are not directly applicable here as the test statistic
image cannot be expressed as a linear combination of component error
fields.

Hence, there is a compelling need for alternative inference proce-
dures that make fewer assumptions. Permutation tests are a type of
nonparametric test that can provide exact control — or approximately
exact when there are nuisance variables — over false positive rates.
These tests depend only on minimal assumptions, namely, that under
the null hypothesis the data is exchangeable, that is, that the joint distri-
bution of the data remains unaltered after permutation (Nichols and
Holmes, 2002; Winkler et al., 2014).

There is relatively little work on permutation tests for variance com-
ponent inference. The typical application of variance components
models is not in quantitative genetics, but in hierarchical linear models
where observational units are nested in clusters, such repeated mea-
sures designs. Of the few permutationmethods proposed in this setting,
they all permute the residuals (after removing the covariate effects) be-
tween andwithin clusterswhile fixing themodel structure.While these
procedures use different test statistics, e.g. Fitzmaurice and Lipsitz
(2007) used the LRT as the statistic, while Lee and Braun (2012) used
the sample variance of estimated random effect, they generally require
iterative optimization of the likelihood function, and thus as permuta-
tion procedures they are yet more computationally demanding.

Samuhet al. (2012)presented a fast permutation test, though it is only
applicable to the random intercept model. And recently Drikvandi et al.
(2013) introduced a fast permutation test based on the variance least
square estimator, which in essence fits a regression model to squared re-
siduals. However, this approach is not based onmaximum likelihood, and
is only intended for a standard repeatedmeasuresmodel,where indepen-
dent subjects are recorded multiple times, not multiple dependent sub-
jects as in a pedigree study.

Our group presented a method to accelerate maximum likelihood
estimation by applying an orthonormal data transformation that diago-
nalizes the phenotypic covariance, transforming a correlated heritability
model into an independent but heterogeneous variance model
(Blangero et al., 2013). However, this advance doesn't eliminate itera-
tive optimization nor possible convergence problems.

In the present work, we expanded upon this work to derive approx-
imate, non-iterative estimates and test statistics based on the first iter-
ation of Newton's method. These procedures can be constructed with
an auxiliarymodel based on regressing squared residuals on the kinship

matrix eigenvalues. Then the Wald and score hypothesis tests can then
be seen as generalized and ordinary explained sum of squares of the
auxiliarymodel. In addition, as the null hypothesis of no heritability cor-
responds to homogeneous variance of the transformed phenotype, we
draw from the statistical literature on tests of heteroscedasticity for a
new and completely different test for heritability detection.We develop
permutation test procedures for each of these methods, thus providing
FWE-corrected voxel- and cluster-wise inferences.

The remainder of this paper is organized as follows. In the next section
we detail the statistical model used and describe each of our proposed
methods. The simulation framework used to evaluate the methods,
and the real data analysis used for illustration are described in the
Evaluation section. We then present and interpret results, and offer con-
cluding remarks.

Theory

In this section we detail the statistical models used, introduce our fast
heritability estimators and tests, and then propose several permutation
strategies for these tests.

Original and eigensimplified polygenic models

At each voxel/element, a polygenic model for the phenotype Y mea-
sured on N individuals can be written as

Y ¼ Xβ þ g þ ϵ ð1Þ

where X is an N × pmatrix consisting of an intercept and covariates, like
ageand sex;β is the p-vector of regression coefficients; g is theN-vector of
latent (unobserved) additive genetic effect; and ϵ is theN-vector of resid-
ual errors. In this study we consider the most common variance compo-
nents model, with only additive and unique environmental components.

The trait covariance, Var(Y) = Var(g + ϵ) = Σ can be written as

Σ ¼ 2σ2
AΦþ σ2

EI; ð2Þ

whereΦ is the kinshipmatrix;σA
2 andσE

2 are the additive genetic and the
environmental variance components, respectively; and I is the identity
matrix. The kinship matrix is comprised of kinship coefficients, half the
expected proportion of genetic material shared between each pair of
individuals (Lange, 2003).

The narrow sense heritability is

h2 ¼ σ2
A

σ2
A þ σ2

E

: ð3Þ

Maximum likelihood is used for parameter estimation with the as-
sumption that the data follows a multivariate normal distribution. The
log likelihood for the untransformed model (Eqs. (1) & (2)) is

‘ β;Σ;Y ;Xð Þ ¼ −1
2
Nlog 2πð Þ−1

2
log Σj jð Þ−1

2
Y−Xβð Þ0Σ−1 Y−Xβð Þ: ð4Þ

For large datasets with arbitrary family structure, the computational
burden of evaluating of the likelihood can be substantial. In particular, a
quadratic form of the inverse covariance, Σ−1, must be computed, along
with the determinant of Σ. We take the approach of Blangero et al.
(2013), who proposed an orthogonal transformation based on the eigen-
vectors of the kinship matrix, thus diagonalizing the covariance and
simplifying the computation of the likelihood (Eq. (4)).

The eigensimplified polygenic model is obtained by transforming
the data and model with a matrix S, the matrix of eigenvectors of Φ
which are the same as the eigenvectors ofΣ, Eq. (2). Applying this trans-
formation to Eq. (1) gives the transformed model

S0Y ¼ S0Xβ þ S0g þ S0ε
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