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Functional connectivity calculated using multiple channels of electromagnetic brain signals is often over- or
underestimated due to volume conduction or field spread. Considering connectivity measures, coherence is
suitable for the detection of rhythmic synchronization, whereas temporal correlation is appropriate for transient
synchronization. This paper presents a beamformer-based imaging method, called spatiotemporal imaging of
linearly-related source component (SILSC), which is capable of estimating connectivity at the cortical level by
extracting the source component with the maximum temporal correlation between the activity of each targeted
region and a reference signal. The spatiotemporal correlation dynamics can be obtained by applying SILSC at
every brain region and with various time latencies. The results of six simulation studies demonstrated that
SILSC is sensitive to detect the source activity correlated to the specified reference signal and is accurate and
robust to noise in terms of source localization. In a facial expression imitation experiment, the correlation
dynamics estimated by SILSC revealed the regions with mirror properties and the regions involved in motor
control network when performing the imitation and execution tasks, respectively, with the left inferior frontal

Keywords:

Beamformer

Functional connectivity
Temporal correlation
Magnetoencephalography

gyrus specified as the reference region.
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Introduction

Elucidating the mechanisms and pathways involved in neural
communication is increasingly important for understanding how
information is processed within the brain (Averbeck and Lee, 2004) as
well as for mapping a comprehensive functional connectome (Biswal
etal., 2010; Smith, 2012). Previous findings have suggested that tempo-
ral correlation of neural activity may be an indication of communication
and information flow between cortical neurons or neural assemblies
(Salinas and Sejnowski, 2001; Singer and Gray, 1995; von der
Malsburg, 1999). Neurons are capable of synchronizing their firings on
a time scale of milliseconds to fulfill sensory-motor, perceptual, and
cognitive functions (Azouz and Gray, 2000; Engel and Singer, 2001;
Engel et al., 1999; Konig and Engel, 1995; Singer and Gray, 1995). The
connectivity of neural networks presents rapid variations. Hence, it is
beneficial to estimate connectivity by using magnetoencephalography
(MEG) or electroencephalography (EEG) recordings with a high degree
of temporal resolution (Schoffelen and Gross, 2009). This study
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proposes a temporal correlation-based source connectivity estimation
method, which can be used to quantify the interdependency between
a reference signal and source activity calculated from electromagnetic
signals.

Numerous techniques have been developed to estimate connections
among brain regions using MEG or EEG signals. Among them, correla-
tion coefficient (Brazier and Casby, 1952) and coherence (Nunez et al.,
1997) are the most commonly used measures to evaluate linear associ-
ations in the time and frequency domains, respectively. In measuring
the degree of synchronization, phase synchronization methods can be
used to estimate the relationship of oscillation phases between two
signals (Hindriks et al., 2011; Lachaux et al., 1999; Mormann et al.,
2000; Tass et al., 1998). Moreover, generalized synchronization
methods measure the level of synchronization and provide the direction
of information flow (Arnhold et al., 1999; Rulkov et al., 1995). In theory,
these measures of functional connectivity are all related to correlation
(Marrelec et al., 2005). Quiroga et al. (2002) showed similar results of
connectivity estimation using the above-mentioned measures. In simu-
lation experiments, Silfverhuth et al. (2012) demonstrated that the cor-
relation coefficient technique is sensitive to direct causal connections.
Ansari-Asl et al. (2006) and Wendling et al. (2009) further demonstrat-
ed that, with regard to coupling model parameters, both correlation
coefficient and coherence techniques achieved sensitivity equal or
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superior to other methods based on phase synchronization and general
synchronization. Finally, in an EEG study by Guevara and Corsi-Cabrera
(1996), the results obtained by coherence were highly similar to those
obtained by correlation coefficient.

Coherence methods quantify the synchronization between two
signals by comparing their spectral power dynamics, which makes
these techniques suitable for detecting rhythmic synchronization
(Nunez et al., 1997). Compared to coherence methods, correlation
methods are better suited to detect the synchronization caused by
time-locked responses (Kujala et al., 2007) or transient responses,
such as P300 waves. Moreover, correlation methods achieve greater
sensitivity than coherence methods when information related to time
latency is provided beforehand (Ansari-Asl et al., 2005). To estimate
latency, Gevins and Bressler (1988) introduced a measure called event-
related covariance (ERC), which is the multi-lag cross-covariance
between the time series of two channels. Latency is then determined ac-
cording to the time lag with the maximum covariance. This measure has
been applied to predict performance accuracy (Gevins et al., 1987), to
study the function of gamma-band brain waves (Gevins et al., 1995;
Menon et al., 1996), and to investigate propagation in both visuomotor
tasks (Gevins et al., 1989a,b) and working memory (Gevins and Cutillo,
1993).

ERC was only applied to estimate connectivity or interdependency
between a pair of electrodes. However, at the sensor level, connectiv-
ity may be over- or underestimated due to the effects of volume
conduction on EEG or field spread on MEG (Hillebrand et al., 2012;
Nunez and Srinivasan, 2006; Winter et al., 2007). These effects often
result in artificial synchrony by a single cortical source contributing
to multiple channels simultaneously (Palva and Palva, 2012).
Schoffelen and Gross (2009) reported an example of overestimated
connectivity using simulation data generated from uncorrelated
sources. In a simulation study by Grasman et al. (2004), an estimated
connectivity map displayed problematic distribution when two syn-
chronized sources existed within the brain. In fact, data of a single
MEG or EEG channel is a mixture of numerous sources with varying
degrees of correlation among them. As a result, interpreting complex
data related to MEG or EEG sensor-level connectivity poses significant
challenges.

Connectivity estimation methods calculated at the cortical level
could reduce the artificial synchrony at the sensor level caused by
volume conduction and field spread (Palva and Palva, 2012). These
methods first estimate cortical source activity and then calculate
source connectivity by determining the level of interdependency
among the estimated sources. For example, BESA source coherence
can be used to calculate coherence between dipole sources estimated
by using the dipole fitting method (Hoechstetter et al., 2004). Brookes
et al. (2011a) estimated the functional connectivity by calculating
the envelope correlation or coherence between two brain source
signals obtained by beamfoming spatial filters. In the study conducted
by Hipp et al. (2012), the artificial synchrony between two sources
was reduced by orthogonalizing signals prior to the calculation of
coherence.

Beamforming methods can estimate brain source activity with bet-
ter spatial resolution than other source estimation methods (Dalal
et al,, 2008; Darvas et al,, 2004; Sekihara et al., 2005). For beamforming
methods, the neural activity is modeled by an equivalent current dipole
and is estimated by a spatial filter for each position in the brain source
space. Vector beamformer, such as linearly constrained minimum
variance (LCMV) beamformer (Van Veen et al., 1997), calculates the
components of dipole source activity in three orthogonal directions.
For scalar beamformer, the dipole orientation has to be determined to
obtain the beamforming spatial filter either by an exhaustive search,
as in the synthetic aperture magnetometry (SAM) method (Robinson
and Vrba, 1998), or by an analytical solution, as in the maximum con-
trast beamformer (MCB) method (Chen et al., 2006). In the experiments
conducted by Vrba and Robinson (2000) and Chen et al. (2006), scalar

beamforming methods can provide a better sensitivity and spatial
resolution than LCMV beamformer.

Estimation of source activity for specific brain regions may include
the contribution of multiple neural populations (Gross and Ioannides,
1999). In other words, each neural region contains multiple sources
with various orientations and temporal profiles. Therefore, activity mea-
sured in individual brain regions may actually comprise multiple compo-
nents and uncorrelated components may result in underestimated
source connectivity. To decrease the influence of uncorrelated compo-
nents in connectivity estimation, Gross et al. (2001) proposed a vector
beamforming method, dynamic imaging of coherent sources (DICS), to
calculate the source component with dominant coherence. DICS has
been applied to investigate the functional network during reading
(Kujala et al., 2007) and to estimate the connection density (Kujala
et al,, 2008).

This paper proposes a beamformer-based imaging method,
called spatiotemporal imaging of linearly-related source compo-
nent (SILSC), which is capable of estimating whole-brain function-
al connectivity with low artificial synchrony. For each targeted
position, SILSC determines a spatial filter, which extracts the
source component with the maximum temporal correlation to a
given reference signal. The orientation of the dipole at the targeted
position is accurately calculated in a closed-form manner. By calcu-
lating the correlation value between the reference signal and each
cortical region within the brain, SILSC produces a correlation map
for further identifying regions significantly correlated to the refer-
ence. Following the concept of ERC in determining time latency,
SILSC uses a sliding time window to estimate the propagation la-
tency between different regions of the brain. Experiments of
simulation data and an MEG experiment involving the imitation
of facial expressions demonstrated the feasibility of the proposed
method.

Methods and materials
Beamformer-based correlation imaging

The correlation coefficient, Ry, between the reference signal a(t) and
the source activity sy(t) is defined as follows:

R _ E{(Se() E{Se(f)})(a(f) E{a( ) (1)
1 l 3

E{(sy(t)—E{sy(t)})*} E{(a(t)—E{a())})* }?

where E{} denotes the expectation value and the parameters 6 = {r, q}

represent the dipole located in position r € R> with orientation q € R>.

Source activity sy(t) can be estimated up to a scale factor Ay by applying

a spatial filter wy € RN on the MEG measurements m(t) € R":

$p() = Nwym(t). 2)

In this paper, “T” indicates the transpose of a matrix or vector and N is
the number of MEG channels. By substituting Eq. (2) into Eq. (1) and
canceling the scale factor Ay, the correlation Ry can be calculated as
follows:

E{ (wiym(t)—E{w;m(t)} ) (a(t) ~E{a(t)}) }

Ry = i
)—E{wim(0)})* |'E{ (a(t)~E{a(t)})*}*

E { (wim(t)

DICS

DICS is a vector beamforming method which can estimate the
coherence or correlation between the reference signal and the
source activity in each brain region (Gross et al., 2001, 2002). In
vector beamforming, three spatial filters are computed for three
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