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Sliding-window correlation is an emergingmethod for mapping time-resolved, resting-state functional connec-
tivity. To avoid mapping spurious connectivity fluctuations (false positives), Leonardi and Van De Ville recently
recommended choosing awindow length exceeding the longestwavelength composing the BOLD signal, usually
assumed to be ~100 s. Here, we provide further statistical support for this rule of thumb. However, we demon-
strate that non-stationary fluctuations in functional connectivity can in theory be detected with much shorter
window lengths (e.g. 40 s), while maintaining nominal control of false positives. We find that statistical power
is near-maximal forwindow lengths chosen according to Leonardi andVanDeVille's rule of thumb. Furthermore,
we lay some foundations for a parametric test to identify non-stationary fluctuations in functional connectivity,
also noting limitations of the sinusoidalmodel upon which our work, and the work of Leonardi and Van De Ville,
is based.Most notably, our analytical results pertain to covariances, as does our statistical test,whereas functional
connectivity is more commonly measured using correlations.

© 2015 Elsevier Inc. All rights reserved.

Resting-state functional brain connectivity is typically represented as
a static network. This is an oversimplification, since any dynamic patterns
of neural synchronization are reduced to time averages. In view of this,
interest is growing in mapping time-resolved, or dynamic, functional
brain connectivity using resting-state functional magnetic resonance
imaging (fMRI) data (Fornito et al., 2013). Mapping brain networks as a
function of time is becoming a widespread approach in the field
(Calhoun et al., 2014; Handwerker et al., 2012; Kopell et al., 2014).

Sliding-window correlation is the most common analysis strategy for
mapping dynamic functional connectivity (Hutchison et al., 2013), al-
though temporal independent component analysis (Smith et al., 2012),
model-based approaches (Lindquist et al., 2014), time-frequency coher-
ence analysis (Chang and Glover, 2010) and change-point detection
methods to identify stationary time segments (Cribben et al., 2012)
have been used. The ubiquity of sliding-window correlation is probably
owing to its simplicity: Pearson correlation is computed between
regionally-averaged fMRI data fallingwithin a fixed-length timewindow.
Sliding the window in time and repeating yields a continuous series of
snapshots tracking functional connectivity dynamics. Qualitatively, if
the window length is too short, noise and intrinsic changes in the
blood-oxygen-level dependent (BOLD) signal manifest as fast but

spurious fluctuations in functional connectivity. Thesefluctuations repre-
sent false positives. However, if the window length is too long, genuine
dynamic patterns of neural synchronization are smoothed within the
length of a single window, and therefore might remain undetected.
These undetected dynamics represent false negatives. The choice of
window length can therefore be cast as a problem of maximizing statis-
tical power.

In a recent commentary, Leonardi andVanDeVille (in press-a) analyt-
ically quantified this tradeoff in the choice ofwindow length bymodeling
the BOLD signal with a sinusoid. They derived a closed-form expression
approximating the sliding-window covariance between two identical si-
nusoids as a function of window position and length. The true covariance
between identical sinusoids with unity root mean square power is unity.
Their approximation accurately predicts larger deviations in the covari-
ance from this true value as the window length is shortened.1

Based on their sinusoidal model, Leonardi and Van De Ville recom-
mend using a window length exceeding 1/fmin, where fmin is the slowest
frequency component in the BOLD signal. Given that resting-state func-
tional connectivity is thought to reflect slow (~0.01 Hz), spontaneous
fluctuations in the BOLD signal (Biswal et al., 1995), their recommenda-
tion implies a window length of 1/0.01 = 100 s. It follows from their
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1 We noticed that their approximation yielded negative covariances for some window
positions, but the covariance between two identical signals is necessarily nonnegative.
This algebraic error was corrected in a subsequent erratum (Leonardi and Van De Ville,
in press-b).

YNIMG-12088; No. of pages: 5; 4C: 2, 3

http://dx.doi.org/10.1016/j.neuroimage.2015.03.047
1053-8119/© 2015 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

Please cite this article as: Zalesky, A., Breakspear, M., Towards a statistical test for functional connectivity dynamics, NeuroImage (2015), http://
dx.doi.org/10.1016/j.neuroimage.2015.03.047

http://dx.doi.org/10.1016/j.neuroimage.2015.03.047
mailto:azalesky@unimelb.edu.au
mailto:michael.breakspear@qimrberghofer.edu.au
Journal logo
http://dx.doi.org/10.1016/j.neuroimage.2015.03.047
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg
http://dx.doi.org/10.1016/j.neuroimage.2015.03.047
http://dx.doi.org/10.1016/j.neuroimage.2015.03.047


recommendation that window lengths of 30 s, for example, necessitate
0.03 Hz high-pass filtering of the BOLD signal to suppress intrinsic low
frequency fluctuations from manifesting as spurious functional connec-
tivity dynamics. However, we suggest that this kind of high-pass filtering
may suppress the very frequencies that give rise to genuine dynamicfluc-
tuations in functional connectivity.

Here, we argue from a statistical viewpoint that the 1/fmin recom-
mendation is a good rule of thumb for selecting window lengths. To
this end, we lay some foundations for a statistical test to identify
dynamic fluctuations in resting-state functional connectivity. The null
hypothesis considered here is that fluctuations in connectivity from
window to window merely reflect finite sample length effects due to
the window length. Our statistical analysis of Leonardi and Van De
Ville's sinusoidal model suggests that dynamic connectivity owing to
spontaneous BOLD fluctuations at frequency f can be detected with
window lengths substantially shorter than 1/f, particularly when the
signal-to-noise ratio (SNR) of the fMRI data is moderate and/or the
functional connectivity dynamics are slow relative to spontaneous fluc-
tuations in the BOLD signal.We suggest that window lengths as short as
40 s (Shirer et al., 2012) may be feasible, without suppression of BOLD
frequencies beyond 0.01 Hz, as long as appropriate statistical testing is
performed. Although we argue that window lengths substantially
shorter than 1/fmin can be used to detect connectivity dynamics, we
also suggest that statistical power is approximately maximized with
1/fmin. We thus conclude that Leonardi and VanDe Ville's recommenda-
tion is supported statistically, although there is some discretion for
researchers to choose shorter windows.

Towards a statistical test

Leonardi and Van De Ville's 1/fmin recommendation corresponds to
the smallest window length for which the sliding window covariance
between two identical sinusoids is constant across all shifts in thewindow
position; or in other words, the smallestwindow length for which there
are absolutely no spurious fluctuations in covariance over time (see
Fig. 1A). However, from a statistical viewpoint, some level of spurious
fluctuations can be tolerated, particularly in the presence of system
noise.

To demonstrate this, we revisit Leonardi and Van De Ville's
sinusoidal model, but this time we add Gaussian white noise to
each sinusoid. In particular, we consider the sliding-window covari-
ance cxy

σ [n] for shifts in the window position n, where xi =
acos(2πfiTR) + σεi,yi = acos(2πfiTR + θ) + σεi and ε is a standard
normal random variable. Here TR denotes the sampling period, σ2 is
the noise variance and f is the “carrier” frequency; that is, the frequency
component of the BOLD signal responsible for generating covariance
fluctuations. We set a ¼

ffiffiffi
2

p
to give unity root mean square power.

Given xi and yi are identical up to a phase shift θ, any fluctuations in
cxy
σ [n] are solely owing to the carrier frequency, or noise, and can thus

be considered spurious (i.e. false positives).
It can be shown that cxyσ [n] is approximately normal with mean

μn = cxy
σ = 0[n], as given by Eq. (5) in Leonardi and Van De Ville (in

press-a), andwith variance that can be bounded from above as follows,

var cσxy n½ �
� �

≤ σ2

w
1þ 1

w2

� �
σ 2 þ 2a2

� �
; ð1Þ

where w is the number of time points comprising the window (see
Fig. 1B). This result can be used to place confidence intervals on the
extent to which cxy

σ [n] deviates, due to noise, from its mean value μn.
We have ℙ(|cxyσ [n] − μn| ≤ Cα/2) ≤ 1 − α, where Cα/2 is the (1 − α/2)-
quantile for a zero-mean Gaussian with variance given by Eq. (1).

This immediately implies a parametric test for stationarity: We
reject the null hypothesis of stationarity if we observe any fluctuations
exceeding the interval,

Iα :¼ min
n

μn−Cα=2;max
n

μn þ Cα=2

h i
:

Taking the minimum/maximum of μn ensures control of familywise
errors across the set of all shifts in window position. When calculating
μn, the phase shift θ should be set such that cos(θ), the covariance be-
tween xi and yi as w → ∞, matches the observed covariance. The noise
variance σ2 should be set in accordance with the SNR of the fMRI data
and depends on the region-of-interest size (Zalesky et al., 2010). And
the sinusoidal amplitude a should be set to the amplitude of the BOLD
signal.

We have thus far focussed on ensuring our test controls false posi-
tives at a nominal level. To demonstrate the sensitivity of our test, we
apply it to the same sinusoidal model as above, but this time with one
of the sinusoids modulated by a slow frequency component f0 b f. The
slow frequency component models a non-stationarity. Following
Leonardi and Van De Ville (in press-a), we consider yi ¼ acos 2π f iTRð Þ
cos 2π f 0iTRð Þ , in which case the sliding window covariance cxy n½ � is
non-stationary at the timescale of 1/f0. We can therefore determine
the minimum window length necessary to reject the null hypothesis
of stationarity for a given significance level and observed noise variance.
Fig. 2 showscxy n½ �as a function ofwindow length for f0= f, f/2, f/3 and f/4,
where f=0.01Hz. Black lines represent the covariance at differentwin-
dow positions. Thick red, green and blue lines are α = 0.05 cutoffs for
SNRs of 2, 4 and 6, respectively. We set θ = π/2 when calculating μn
since the covariance between xi andyi is zero asw→∞. The null hypoth-
esis is rejected at a significance of αwhen there exists a shift in window
position n such that cxy n½ �∉ Iα; that is, when at least one black line ex-
ceeds the appropriate colored line.
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Fig. 1.A) Covariance between two identical sinusoids of frequency 0.025Hz as a function ofwindow length. Colored lines represent the covariance at differentwindowpositions. B)Upper
bound on the variance of cxyσ[n]. Colored lines represent empirical variances at different window positions for σ = 1, θ = 0 and f = 0.025 Hz. Black line represents our upper bound.
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