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15Incremental instruction on the workings of a set of mechanical systems induced a progression of changes in the
16neural representations of the systems. The neural representations of four mechanical systems were assessed be-
17fore, during, and after three phases of incremental instruction (which first provided information about the sys-
18tem components, then provided partial causal information, and finally provided full functional information). In
1914 participants, the neural representations of four systems (a bathroom scale, a fire extinguisher, an automobile
20braking system, and a trumpet) were assessed using three recently developed techniques: (1) machine learning
21and classification of multi-voxel patterns; (2) localization of consistently responding voxels; and (3) representa-
22tional similarity analysis (RSA). The neural representations of the systems progressed through four stages, or
23states, involving spatially and temporally distinct multi-voxel patterns: (1) initially, the representation was pri-
24marily visual (occipital cortex); (2) it subsequently included a large parietal component; (3) it eventually became
25cortically diverse (frontal, parietal, temporal, and medial frontal regions); and (4) at the end, it demonstrated a
26strong frontal cortexweighting (frontal andmotor regions). At each stage of knowledge, itwas possible for a clas-
27sifier to identify which one of fourmechanical systems a participant was thinking about, based on their brain ac-
28tivation patterns. The progression of representational states was suggestive of progressive stages of learning:
29(1) encoding information from the display; (2) mental animation, possibly involving imagining the components
30moving; (3) generating causal hypotheses associated with mental animation; and finally (4) determining how a
31person (probably oneself) would interact with the system. This interpretation yields an initial, cortically-
32grounded, theory of learning of physical systems that potentially can be related to cognitive learning theories
33by suggesting links between cortical representations, stages of learning, and the understanding of simple
34systems.

35 © 2015 Published by Elsevier Inc.
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40 Introduction

41 Just knowing what some mechanical system accomplishes is often
42 sufficient. Sometimes it is enough to know that when you aim a fire ex-
43 tinguisher and squeeze the handle, a fire-suppressing fluid sprays onto
44 thefire. But howdoes itwork? Learning howamechanical deviceworks
45 through instruction is a critical part of many jobs. Understanding the
46 psychological and neural processes that occur during such learning
47 can now be studied with brain imaging to reveal how new technical
48 knowledge is built up in the brain in the course of instruction.
49 Amain aim of this research was to show how the neural representa-
50 tions of specific technical knowledge change as a result of acquiringnew
51 information. Of course, there are many other types of changes in the
52 brain following training or instruction that have been reported. There

53are three critical differences between prior investigation of brain chang-
54es due to learning and this research, measured here are: (1) changes in
55representation as opposed to structural changes; (2) changes due to
56instruction-based learning as opposed to training, specifically in the sci-
57ence domain of the physics of mechanical systems; and (3) changes in
58the neural representation of acquired knowledge as opposed to activa-
59tion changes during a performance of a task.
60For example, structural brain changes due to training have been
61observed in the cortical responses of multiple units in cats (Merzenich,
621975), rats (Kilgard and Merzenich, 1998), and adult monkeys
63(Recanzone et al., 1993). At a more molar level, learning-based changes
64in grey and white matter have been observed in human participants
65(see Fields, 2011; Lövdén et al., 2013; Thomas and Baker, 2013; Zatorre
66et al., 2012 for reviews). For example, gray and white matter changes
67were observed when people were trained in juggling (Draganski et al.,
682004). Evidence that structural changes occur with training also comes
69from visuo-motor tasks, working memory tasks, and aerobics. Many of
70these studies involve tasks inwhich learning occurs as an effect of repeat-
71ed training trials rather than being due to learning from instruction (as
72might occur in a classroom).
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73 A number of tasks have shown brain-based changes in activation
74 patterns due to training or instruction-based learning. Typically, these
75 tasks examine brain changes in activation, in which it may be difficult
76 to separate new representations from learned processes. Examples of
77 tasks that examine activation in training-based learning include artifi-
78 cial grammars (Q3 Petersson, Folia, & Hagoort, 2012), perceptual category
79 learning (Q4 Poldrack et al., 2001), and motor learning (Q5 Toni, Krams,
80 Turner, & Passingham, 1998). Instruction-based learning tasks such as
81 algebra (Anderson et al., 2012 have also resulted in activation changes.
82 One study demonstrated both activation changes and white matter
83 changes as a result of both instruction and repeated training in word
84 decoding in children with dyslexia (Q6 Meyler et al., 2008;Q7 Keller & Just,
85 2009). Unlike these previous studies, here we look not for changes in
86 tissues or in regional activation, but in the neural representations of spe-
87 cific concepts using recent methods that can identify the nature of the
88 information that is being coded by a given fMRI activation pattern.
89 The neural changes in our studywere assessed in terms of themulti-
90 voxel fMRI-measured activation pattern that occurs when participants
91 think about how a particular mechanical systemworks. More precisely,
92 the study assessed how their neural representation of a system changed
93 as they learned more about its workings. The change in knowledge
94 about specific mechanical systems should produce measureable chang-
95 es in the neural representations of those systems. Furthermore, the
96 changes may be directly related to the content of the instruction, such
97 that instruction that describes shared properties between systems
98 may increase their neural similarity.
99 Participantswere taughtwith a series of successive increments of in-
100 formation about mechanical systems. The first level of explanation pro-
101 vided information about the components of the mechanical systems.
102 The second increment included limited functional information. The
103 third increment of explanation included the entire functional and causal
104 sequence of the components of the mechanical systems. Each of these
105 instructional steps should result in discernable neural changes. More
106 specifically, the progressive deepening of the explanations of the sys-
107 tems might be expected to produce increasing involvement of cortical
108 systems implementing higher-level psychological processes, and un-
109 changing involvement of lower level perceptual systems that process
110 the visual stimulus.
111 Despite the absence of prior neuroimaging investigations of mechan-
112 ical systems, previous research in the brain bases of general cognitive
113 processes does provide guidance as to which cortical systems might be
114 involved. A set of eight potential cognitive processes, which have previ-
115 ously been associatedwith cortical systems, are postulated to correspond
116 to regions or small sets of regions (networks) involved in understanding
117 how mechanical systems work. These eight processes (and postulated
118 cortical systems) consist of: (1) mental animation (bilateral parietal:
119 Boronat et al., 2005), (2) causal reasoning (right temporo-parietal and
120 medial prefrontal: Mason and Just, 2011), (3) embodied cognition (pre-
121 and post-central: Rueschemeyer et al., 2010), (4) semantic knowledge
122 (left temporal: Price, 2000), (5) language in context (bilateral inferior
123 frontal: Mestres-Missé et al., 2008), (6) biological/goal-directed motion
124 (right temporal: Pelphrey et al., 2003), (7) rule learning (middle and su-
125 perior frontal: Bunge, 2004), and (8) visual processing (occipital cortex).
126 The contributions of these various systems might be expected to shift as
127 the instruction and learning progresses.
128 The goal of this studywas to examine the changes in the neural rep-
129 resentation over the course of learning and instruction, rather than es-
130 tablishing the correspondence between cognitive functions and brain
131 regions.Wedeveloped several hypotheses concerning changes in repre-
132 sentation. First, prior to instruction, during the first exposure to only the
133 diagram and label, the hypothesis is that the participating regions
134 would be primarily visual in nature, loading on the occipital cortex. Sub-
135 sequent neural representations should involve relatively less occipital
136 participation. Second, following the introduction of causality informa-
137 tion, the representation could be expected to be distributed across a
138 large set of systems including causal inference related regions (medial

139frontal and right temporo-parietal) for inferring causal relations
140among the components’ motions. Third, bilateral parietal, particularly
141the intraparietal sulcus, should increase in participation once compo-
142nents of the mechanical systems are introduced as a result of imagining
143components moving with respect to each other. Intuitively imagining
144the components moving may be a part of mental animation (Hegarty,
1451992). These hypotheses provide a starting point for examining the
146changing involvement of cortical systems during learning.
147Several recently developed methods for assessing neural knowledge
148representations were used in the study. One of these was the machine
149learning and classification of themulti-voxel activation patterns associat-
150ed with each of the mechanical systems (Just et al., 2010; Mitchell et al.,
1512008). A related method analyzed the locations of the types of voxels
152whose activation levelsweremodulated in a consistentway by the differ-
153entmechanical systems (Just et al., 2010). A thirdmethod used represen-
154tational similarity analysis to assess how similarly-described systems
155became neurally more similar (Connolly et al., 2012). These methods
156can be used to converge on an account of how the neural representations
157change as instruction and knowledge cumulate.

158Materials and methods

159Participants

160Fourteen college students (6 females, all right handed and native
161speakers of English) between the ages of 18 and 26 years (M= 21.57;
162SD = 2.79) participated and were included in all of the analyses (no
163subjects were excluded). Each participant gave signed informed con-
164sent approved by the Carnegie Mellon University Institutional Review
165Board. Each participant received 5 minutes of practice with the experi-
166mental paradigm on a single training item (that was not included in the
167experimental stimuli) before performing the task in the scanner. In a
168debriefing session, all participants responded positively when asked if
169they felt they had gained an understanding of how the mechanical sys-
170tems worked. Additionally, when they were asked if they had “prior
171knowledge of how any of the systems worked” only one participant
172said he had a very basic understanding of the systems. This participant’s
173data did not differ from the others’ so it was retained in the analysis

174Experimental design

175In the scanner, participants were taught how four familiar devices
176work (a bathroom scale, a fire extinguisher, car brakes, and a trumpet).
177The systems were selected to vary across some potentially interesting
178dimensions (e.g., manipulation by hand versus foot, being composed
179of different types of mechanical components) as well as meeting two
180criteria: (1) amenability of the explanation to segmentation into succes-
181sive stages; (2) informal assessment that students who were not in sci-
182ence or engineeringwould be unlikely to knowhow the systemworked.
183The experimental design consisted of the four items presented in
184two types of blocks: thinking (or “test”) blocks and explanation (or
185“training”) blocks. The experimental design and timing of all events
186(presentations, blocks and scans) are shown in Fig. 1. In the thinking
187blocks, which provide the main data for this study, participants were
188presented with each of the four items and asked to “Think about how
189this mechanical systemmight function.” The explanation blocks cumu-
190latively described how the components of each systemwork together to
191cause the system to function. During the explanation blocks, subjects
192were asked to read each sentence and “Think about the functioning of
193each stage of the mechanical system.”
194In the thinking blocks, each stimulus item consisted of a realistic pic-
195ture of the system above a schematic diagram and a verbal label for the
196system, as shown in Fig. 2A. In a thinking block, themechanical systems
197were presented in six presentations (i.e., repetitions) of the four sys-
198tems. The presentation order of the mechanical systems in each block
199was randomized using a Latin square design with an additional
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