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Several studies usingmagnetic resonance imaging (MRI) scans have showndevelopmental trajectories of cortical
thickness. Cognitive milestones happen concurrently with these structural changes, and a delay in such changes
has been implicated in developmental disorders such as attention-deficit/hyperactivity disorder (ADHD). Accu-
rate estimation of individuals' brain maturity, therefore, is critical in establishing a baseline for normal brain de-
velopment against which neurodevelopmental disorders can be assessed. In this study, cortical thickness derived
from structuralmagnetic resonance imaging (MRI) scans of a large longitudinal dataset of normally growing chil-
dren and adolescents (n=308), were used to build a highly accurate predictivemodel for estimating chronolog-
ical age (cross-validated correlation up to R=0.84). Unlike previous studies which used kernelized approach in
building predictionmodels, we used an elastic net penalized linear regressionmodel capable of producing a spa-
tially sparse, yet accurate predictive model of chronological age. Upon investigating different scales of cortical
parcellation from 78 to 10,240 brain parcels, we observed that the accuracy in estimated age improved with in-
creased spatial scale of brain parcellation, with the best estimations obtained for spatial resolutions consisting of
2560 and 10,240 brain parcels. The top predictors of brainmaturity were found in highly localized sensorimotor
and association areas. The results of our study demonstrate that cortical thickness can be used to estimate indi-
viduals' brainmaturitywith high accuracy, and the estimated ages relate to functional and behaviouralmeasures,
underscoring the relevance and scope of the study in the understanding of biological maturity.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Comprehensive investigation of the maturational trajectories of
brain structure have been facilitated by the advent of advancedmagnet-
ic resonance imaging (MRI)methods.MRI scans of normally developing
children and adolescents have demonstrated developmental trajecto-
ries of gray matter (GM) volumes and cortical thickness (Giedd et al.,
1999; Giedd and Rapoport, 2010; Gogtay et al., 2004; Shaw et al.,
2008). Deviations in these normal brain developmental trajectories
have been proposed to give rise to neurodevelopmental disorders
such as ADHD (Paus et al., 2008; Shaw et al., 2007, 2010). As such, a sin-
gle integrated reference curve for brain maturation might be useful for
early diagnosis of neuropsychiatric disorders. Towards realizing this
goal, recent studies have usedmultivariatemachine learning algorithms
to derive brain maturity curves (Brown et al., 2012; Dosenbach et al.,

2010; Erus et al., 2014; Franke et al., 2012; Mwangi et al., 2013).
While Franke et al. (2012) used a voxel basedmorphometry (VBM) ap-
proach of T1-weightedMRI scans to predict biological age with high ac-
curacy (subjects with age ranging from 5 to 18 years, R = 0.93, mean
absolute error, MAE= 1.1 years); Dosenbach et al. (2010) used resting
state functional connectivity MRI to predict chronological age (subjects
with age ranging from 7 to 30 years, R2 = 0.55); and Erus et al. (2014)
used diffusion tensor imaging (DTI)-based metrics of fractional anisot-
ropy and diffusivity to predict individual subject’s chronological age
(subjects with age ranging from 4 to 85 years, R = 0.89). Brown et al.
(2012) combined multiple imaging indices: T1-, T2- and diffusion-
weighted imaging (subjects with age ranging from 3 to 20 years, R =
0.96, MAE = 1.0 years) while Erus et al. (2014) used T1-based regional
volumetricmaps of GM,WMand lateral ventricle to predict brainmatu-
rity (subjects with age ranging from 8 to 22 years, R = 0.89).

None of the earlier studies except Brown et al. (2012), have explored
the contribution of cortical thickness in estimating chronological age.
The particular study, however, used cortical thickness averaged over
the whole brain and over the entire hemisphere (Brown et al., 2012).
Such an averaging approach may miss important information as to
which local cortical regions are top predictors ofmaturation. This is par-
ticularly relevant since localized changes in cortical thickness have
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proven to be sensitive indices of brainmaturation in typical and atypical
brain development (Ameis et al., 2014; Gogtay et al., 2004; Raznahan
et al., 2010, 2011; Sharda et al., 2014; Shaw et al., 2008, 2012, 2013).

Thus, the principal aim of the study was to assess the top predictors
of brain maturity based on cortical thickness. Additionally, since brain
maturation and cognitive development have been shown to be associat-
ed with changes in cortical thickness in highly localized brain regions
(Shawet al., 2006),we aim to investigate the top predictors of brainma-
turity at high spatial resolutions. To realize this goal, we apply an elastic
net penalized linear regressionmodel that is capable of producing a spa-
tially sparse, but yet accurate predictivemodel of chronological age. Our
machine learning approach is different from kernelized approaches (ei-
ther relying on support vector machines or relevance vector machines)
of the previous studies that promote sparsity in the kernel space
(Dosenbach et al., 2010; Erus et al., 2014; Franke et al., 2012; Mwangi
et al., 2013). Enforcing sparsity in the kernel space does not ensure spar-
sity in data space, and thus the predictive models of the earlier studies
have been spatially dense, meaning that most brain voxels contribute
to the prediction models resulting to findings that are hard to interpret.
Instead, by imposing a sparsity requirement directly on the data space,
we obtained predictive models that are spatially sparse (few voxels or
surface points contribute to prediction) and perhaps easier to interpret.
A more technical account on this difference can be found in (Li et al.,
2005).

Materials and methods

Participants

The data for the studywere obtained from thePediatricMRIData Re-
pository created for the NIH MRI Study of Normal Brain Development
(Evans and Brain Development Cooperative, 2006); a multi-site project
providing a normative database to characterize healthy brain matura-
tion in relation to behavior. Demographic details of the subjects used
in the study are given in Table 1.

MRI acquisition protocol

For each participant, a three-dimensional T1-weighted Spoiled Gra-
dient Recalled (SPGR) echo sequence suing 1.5 Tesla scanners was ob-
tained, with 1 mm isotropic data acquired sagittally from the entire
head. Due to the limit of 124 slices in GE scanners, slice thickness of
~1.5 mm was acquired. Additionally, using a two-dimensional (2D)
multi-slice (2 mm) dual echo fast spin echo (FSE) sequence, T2-
weighted (T2W) and proton density-weighted (PDW) images were ac-
quired. The total acquisition time was about 25 minutes, and was often
repeated when indicated by the scanner-side quality control process.
Subjects which were not able to tolerate this procedure, received a fall-
back protocol that involved shorter 2D acquisitions with slice thickness
of 3 mm (Evans and Brain Development Cooperative, 2006).

Cortical thickness measurements

All MRI images were processed using the CIVET pipeline developed
at the MNI for fully automated structural image analysis (http://www.

bic.mni.mcgill.ca/ServicesSoftware/CIVET). The native MRI images
were first corrected for non-uniformity artifacts using the N3 algo-
rithms (Sled et al., 1998), and registered into the stereotaxic space
(Talairach and Tournoux, 1988) using a 9-parameter linear transforma-
tion (Collins et al., 1994). The registered and corrected images were fur-
ther segmented into gray matter, white matter, cerebrospinal fluid and
background using an advanced neural net classifier (Zijdenbos et al.,
2002), and fractional tissue content in each voxel was estimated
(Tohka et al., 2004). Then, using the CLASP algorithm (Kabani et al.,
2001; Kim et al., 2005; Lee et al., 2006; MacDonald et al., 2000), the
inner and outer gray matter surfaces were automatically extracted
from eachMR volume. Lastly, cortical thickness was measured in native
space using the linked distance between the two inner and outer gray
matter surfaces at 81,924 vertices (163,840 polygons) throughout the
cortex (Lerch and Evans, 2005). A stringent quality control (QC) proce-
durewas followed at several data pre-processing steps in order tomake
sure that there were no motion, surface-surface intersections, blood
vessels, etc. (see Supplementary Table S1), resulting to the longitudinal
data (679 scans) from 308 subjects for the study.

Age prediction

We assumed a linear model for predicting subject’s age based on
cortical thickness measurements. The model is

AGE ¼
XP
i¼1

biTi þ K þ ε ð1Þ

where AGE is the age of the subject (in days); Ti, i=1,…, p, are the cor-
tical thicknessmeasurements at the point i of p vertices; bi and K are the
model parameters, and ε is an error term. Before proceeding, we stan-
dardize the variables Ti so that each of them has unit variance and
zero mean. We denote these standardized thickness measurements
for subject i at the point j by xij.

We considered several spatial resolutions of measurements for corti-
cal thickness. The original 81,924 measurements on the cortical surface
were grouped into smaller sets and averaged. The number of parcels cho-
sen (p) were 78, 160, 640, 2560 and 10,240. The case p=78was obtain-
ed by averaging cortical measurements in each cortical region of the
Automated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al.,
2002). The cases p=160, 640, 2560 and 10,240were obtained by recur-
sivelymerging the neighbouring triangles of the triangular surfacemesh
model.

The prediction models contained up to 10,241 model parameters for
data fromN=679 scans (308 subjects). This rendered the ordinary least
squares (OLS)-based parameter estimation ill-posed. Therefore, we used
penalized least squares approach with elastic net penalty (Zou and
Hastie, 2005). This approach leads to simultaneousmodel parameter es-
timation and variable selection by forcing many parameters to zero
value. We denote the standardized measurements for the subject i by
xi = [xi1, …, xip]T, and the model parameters by β = [b1, …, bp]T. We
aim to minimize the elastic net cost function, which is written as (Zou
and Hastie, 2005) –

1
2N

XN
i¼1

AGEi−K−xTi β
� �2 þ λ

Xp
j¼1

α bj

��� ���þ 0:5 1−αð Þ bj

� �2
� �

ð2Þ

Symbolsα and λ in Eq. (2) denote regularization parameters and the
latter term is the elastic net penalty. The elastic net penalty is a weight-

ed sum of (i) the LASSO penalty βj jj j1 ¼ ∑
p

j¼1
bj
�� ��� �

and (ii) ridge regres-

sion penalty 0:5 βj jj j2 ¼ ∑
p

j¼1
0:5 bj

� �2� �
. Due to L1-norm regularization,

LASSO penalty forces many parameters to have zero values leading to

Table 1
Demographic details of subjects used in the study. FSIQ = full scale intelligence quotient,
PIQ = performance intelligence quotient, VIQ = verbal intelligence quotient.

Total number of subjects (Males/Females): 308 (136/172)
Total number of scans: 679
Total number of acquisition sites: 6
Age: 12.9 ± 3.8
FSIQ: 111.7 ± 12.1
PIQ: 110.6 ± 12.7
VIQ: 110.3 ± 12.9

351B.S. Khundrakpam et al. / NeuroImage 111 (2015) 350–359

http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET
http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET


Download English Version:

https://daneshyari.com/en/article/6025476

Download Persian Version:

https://daneshyari.com/article/6025476

Daneshyari.com

https://daneshyari.com/en/article/6025476
https://daneshyari.com/article/6025476
https://daneshyari.com

