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Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-
stationary statistical properties across regions and display various artifacts.

While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the nor-
mality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale
studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined
models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing
large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simu-
lations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Sec-
ond, we show that robust regression yields more detections than standard algorithms using as an example an
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imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a
large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression
in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further
improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust
procedures provide important advantages in large-scale neuroimaging group studies.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Population-level inference or population comparison based on neu-
roimaging data most often rely on a mass univariate linear model, in
which voxel-based brain measurements are modeled as a linear func-
tion of the variables of interest (e.g. age or sex) forming the so-called de-
sign matrix for a given group of subjects. Depending on the imaging
modality, these measurements reflect tissue density or volume, neural
activity (as measured by the BOLD signal) or (probabilistic) white-
matter tract orientation through diffusion MRI. This mass-univariate
framework is weakened by some well-known issues, such as i) the
large number of statistical tests performed, which entails strong correc-
tions for multiple comparisons to control for type I errors (Bennett et al.,
2009); ii) the presence of correlations in the signal, that break the
independence assumption (Friston et al., 1995); and iii) the presence
of undesired effects or artifacts that substantially degrade the image
quality, at a local or global spatial scale (Erasmus et al., 2004). Finally,
inter-individual variability in brain anatomy, cognitive function and
functional organization potentially results in mismatches in the
image registration that degrade the sensitivity of statistical inference
procedures.

Methods for neuroimaging studies

Neuroimaging group analyses aim at detecting the effect of a vari-
able of interest by assessing the significance of its correlation with
brain images. Many data processing and statistical analysis methods
have been proposed in the literature to perform neuroimaging group
analyses. These deal with the three main issues mentioned above:
local averages within regions of interest (Flandin et al., 2002;
Nieto-Castanon et al., 2003; Thirion et al., 2006) and feature selec-
tion (Hansen et al., 1999; Thirion and Faugeras, 2003; Spetsieris
et al., 2009) are used to reduce the data dimension and the depen-
dence between descriptors; prior smoothing of the images reduces
registration mismatches (Worsley et al., 1996) and can be accounted
for in standard multiple comparison corrections (Worsley et al.,
1992); introducing noise regressors into the model aims at improving
the sensitivity of the analyses (Lund et al., 2006); cluster-size analysis
(Roland et al., 1993; Friston et al., 1993; Poline and Mazoyer, 1993),
Threshold-Free Cluster Enhancement (TFCE) (Smith and Nichols,
2009; Salimi-Khorshidi et al., 2011) and Randomized Parcellation
Based Inference (RPBI) (Da Mota et al., 2013) are state-of-the-art
methods that combine several of the above-mentioned concepts to im-
prove the statistical sensitivity of the analyses. For a more complete re-
view, see Da Mota et al.,, 2013; Moorhead et al. (2005); and Petersson
et al. (1999). All these methods rely on a set of assumptions about the
statistical structure of the data (e.g. Gaussian-distributed data,
“smooth-enough” images (Hayasaka et al., 2004), descriptors (in-)de-
pendence), which are difficult to check in practice. Even though some
tools have been designed to check whether the data exhibit artifacts,
such as Luo and Nichols (2003), no guarantee is given that the images
output by standard pre-processing pipelines will conform to these as-
sumptions. In particular, most of the methods fit a linear model to the
data with ordinary least squares (OLS) regression, a procedure that is
optimal only if the noise is Gaussian-distributed with a given variance

across samples (i.e. across individuals). Note that, by contrast, the vari-
ance can vary arbitrarily across voxels.

Large cohorts and the need for robust tools

Departure from normality has stronger effects in small sample set-
tings than in large sample settings, where the central limit theorem
leads to Gaussian errors on the estimated parameters. On the other
hand, violation from standard hypotheses about the statistical structure
of the data cannot be easily detected when 10 to 20 subjects are includ-
ed in a neuroimaging experiment, while significant departure may be
observable when larger groups of subjects are considered. Consequent-
ly, we can expect a much better model of the data, and some gains in
sensitivity or specificity if we use a model that relaxes standard, simplis-
tic assumptions such as Gaussian-distributed data, or homoscedastic
noise. The need for such improved techniques becomes more apparent
as more large-scale neuroimaging cohorts are now emerging (ADNI (Jack
etal., 2008), IMAGEN (Schumann et al., 2010), Human Connectome (Van
Essen et al., 2012) cohorts, Saguenay Youth Study (Pausova et al., 2007)).
Using the simplest analysis scheme, i.e. the massively univariate voxel-
wise inference, Wager et al. (2005) suggested to replace standard ordi-
nary least squares regression by robust regression (Huber regression
(Huber, 2005)), which has the advantage of i) relying on weak structural
assumptions (symmetric, unimodal data) and ii) being robust to
outliers. Wager and colleagues' work successfully showed sensitivity
improvements for both inter- and intra-subject analyses, as well as
better results stability in the presence of outliers. But this work was
limited to the consideration of small groups of subjects (<20) and
only the outlier-resistant property of the method seems to have been
considered by the community (Poldrack, 2007; Ochsner et al., 2009;
McRae et al., 2010; Kober et al., 2010; Atlas et al., 2010).

Robust regression schemes

Many robust regression settings have been proposed in the statisti-
cal literature to perform accurate detection in the context of non
normally-distributed data. least absolute deviation (LAD) regression
(or ¢ regression) (Dodge, 1987) minimizes the sum of the absolute
value of the model residuals. It is hard to compute in practice and the so-
lution of the associated optimization problem may not be unique
(Huber, 2005). The repeated median algorithm (Siegel, 1982) is a re-
gression algorithm that targets a high level of outlier resistance, namely
up to 50% of contamination (a property known as high-breakdown
point). It is computationally expensive and the resulting estimate is
not affine equivariant, because it is sensitive to a rotation of the data.
The least median of squares (LMS) (Hampel, 1975) and least trimmed
squares (LTS) (Rousseeuw, 1984) estimates also have a high breakdown
point but can only be computed with algorithms for which there is no
known global optimum. The efficiency of these methods for uncontam-
inated samples is generally poor. This can be easily understood if one
conceptualizes robust methods as methods that reject the input sam-
ples that are most dissimilar to the others: the straightforward conse-
quence is that the number of samples used in the estimation is
smaller, resulting in more variable estimates and power loss. A compro-
mise thus needs to be found between the amount of robustness to
achieve and the estimation accuracy when there are no or few outliers.
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