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Recently, fMRI researchers have begun to realize that the brain's intrinsic network patterns may undergo sub-
stantial changes during a single resting state (RS) scan. However, despite the growing interest in brain dynamics,
metrics that can quantify the variability of network patterns are still quite limited. Here, we first introduce vari-
ous quantification metrics based on the extension of co-activation pattern (CAP) analysis, a recently proposed
point-process analysis that tracks state alternations at each individual time frame and relies on very few assump-
tions; then apply these proposedmetrics to quantify changes of brain dynamics during a sustained 2-back work-
ing memory (WM) task compared to rest. We focus on the functional connectivity of two prominent RS
networks, the default-mode network (DMN) and executive control network (ECN). We first demonstrate less
variability of global Pearson correlations with respect to the two chosen networks using a sliding-window
approach duringWM task compared to rest; then we show that the macroscopic decrease in variations in corre-
lations during a WM task is also well characterized by the combined effect of a reduced number of dominant
CAPs, increased spatial consistency across CAPs, and increased fractional contributions of a few dominant CAPs.
These CAP metrics may provide alternative and more straightforward quantitative means of characterizing
brain network dynamics than time-windowed correlation analyses.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Intrinsic networks observed in the resting state (RS) have been in-
tensively explored in the past two decades (for reviews, see Biswal,
2012; van den Heuvel and Hulshoff Pol, 2010), and have contributed
enormously to the understanding of brain function. Until recently, all
such studies have relied on the key assumption of temporal constancy.
However, it was recently observed that RS network patternsmay exhib-
it substantial changes across a single scan (Allen et al., 2014; Chang and
Glover, 2010; Smith et al., 2012), and investigations on anesthetized an-
imals (Hutchison et al., 2013b; Keilholz et al., 2013; Majeed et al., 2011)
further demonstrated the functional relevance of such phenomena.
Complementary to the conventional approaches, which integrate time
series signals across the entire scan, the wealth of information carried
by widely observed brain dynamics has great potential to unveil new
understanding in cognitive and clinical applications (Holtzheimer and
Mayberg, 2011; Rubinov and Sporns, 2011; Sakoglu et al., 2010).

Despite the growing interest in resting brain dynamics, analysis
strategies and metrics to quantify the temporal variations are still

quite limited. The most common approaches focus on the temporal
changes of different quantification measures in a sliding sequence of
truncated time windows (Chang and Glover, 2010; Handwerker et al.,
2012; Hutchison et al., 2013b; Jones et al., 2012). However, sliding win-
dow methods always suffer from tradeoffs between the statistical
significance achievable in a short duration window (e.g. there are ap-
proximately 10 time points in a 20-s window with conventional TR
sampling rate) and the reduction in high frequency content obtained
as the window duration is increased (for a review, see Hutchison
et al., 2013a).

Very recently, some studies looking at resting state functional con-
nectivity have begun to focus on those time frames when the spontane-
ous BOLD signal in a voxel or region exhibits relatively large amplitude.
By deconvolving the task hemodynamic response function from the rest
data, Petridou et al. (2013) have identified a series of ‘spontaneous
events’ and demonstrated the contribution of these events to the corre-
lation strength and power spectra of the slow spontaneous fluctuations.
Furthermore, Tagliazucchi et al. (2012) have shown that using such
spontaneous events allows one to recover those resting-state networks
computed with continuous slow fluctuations across the whole scan.
Subsequently, Liu and Duyn (2013) proposed co-activation pattern
(CAP) analysis, which offers an alternative to the conventional linear
correlation analysis and novel insights into the dynamic changes of
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the on-going network patterns. Briefly, the authors noted that conven-
tional linear correlation results (seed-voxel based whole brain correla-
tion) resemble maps obtained by temporally averaging the whole
brain spatial maps at a few critical time points when the seed signal in-
tensity surpasses a certain threshold, and demonstrated that multiple
stable spatial patterns (referred to as co-activation patterns, or CAPs)
can be obtained by temporal decomposition (clustering) of these critical
time frames. Compared to the sliding-window approach, CAP analysis
promises the examination of state alternations closer to the temporal
resolution of individual time frames but relies on very few model as-
sumptions. Furthermore, the variations of different spatial patterns
and their associated fractional scan time durations (number of samples
of a CAP/total number of TRs), or temporal fractions (Liu et al., 2013)
provide richer quantification measures of brain dynamics that are sim-
ple to interpret.

Promising as itmay seem, several technical concerns potentially pre-
vent CAPs from facilitating routine examination/quantification of brain
dynamics: the enormous feature dimension (total number of gray mat-
ter voxels) in temporal clustering imposes intensive computational load
and may not support data acquisitions at higher temporal/spatial reso-
lutions; the spatial patterns and temporal fractions of the resolved
CAPs are sensitive to the choice of temporal clustering numbers.

The primary focus of the current study is therefore to extend and
synthesize information inherent in the CAP concepts, and provide a
framework to quantify brain dynamics in routine neuroimaging investi-
gations. To demonstrate that the proposed metrics based on CAPs can
reveal more elaborate changes in brain repertoire than is shown by
sliding-window correlation analysis, we apply both approaches to com-
pare the variability of functional connectivity of two RS networks (the
default-mode network (DMN) and executive control network (ECN))
at rest to that of a sustained 2-back working memory (WM) task. As
theWM task enforces a control state withmore engaged cognitive pro-
cessing than that of rest, where uncontrolled changes in vigilance may
cause significant state fluctuations (Chang et al., 2013; Wong et al.,
2013), we anticipate that prominent differences in brain dynamics
will be observed between the twomental conditions, thereby affording
a means to demonstrate the value of the proposed metrics.

Material and methods

Extension of CAP analysis

A brief introduction of CAP analysis
In conventional seed-based correlation analysis, the network pat-

terns associated with a given seed are typically estimated by the linear
correlation between the time series of each gray matter voxel and the
referenced seed. The CAP method (Liu and Duyn, 2013) demonstrates
that identical network patterns can be obtained by voxel-wise averag-
ing the spatialmaps of those time frameswhen the seed signal intensity
surpasses a certain threshold (see Fig. 1A for illustration). Temporal
clustering of those extracted time frames based on their spatial similar-
ity can yieldmultiple spatial patterns (Fig. 1B),which are conjectured to
be functionally relevant and reflect co-activation patterns (CAPs) across
the whole brain at each individual time frame.

ROI-wise CAPs
The CAPs demonstrated by Liu and Duyn (2013) were obtained from

maps based on correlations between a seed and every voxel. However, as
shown in Fig.1, thoseCAPs exhibit identifiable structures that are regionally
homogeneous,motivating the use of an “ROI-wise” CAPs analysis, wherein
the brain is parcellated into multiple fixed ROIs, and the average signal in-
tensity of all the voxelswithin each ROI (instead of the raw signal intensity
of each voxel) is taken as the feature set for K-means temporal clustering.

In contrast to the original voxel-wise CAPs, ROI-wise CAPs can pro-
vide increased spatial signal to noise ratio (SNR) in local brain regions,
and more importantly, enhance the overall computational efficiency

(the feature size has been reduced from # of whole gray matter voxels
to # of ROIs used), which is essential for extension into larger datasets.
With a surrogate dataset, we demonstrate that a whole brain ROI-wise
CAP analysis provides similar results to a voxel-wise CAP analysis (the
CAP analysis section and Supplementary Figs. S1 and S2).

Quantifiable metrics of brain dynamics in CAPs

Information in the spatial patterns of CAPs. The spatial patterns of CAPs
explicitly reflect the repertoire of brain states across the whole scan.
The spatial similarity between different CAPs and the quantity of CAPs
that actually dominate the brain repertoire reflect the extent of network
changes incurred by a switch from one state to another, and can there-
fore be utilized as metrics to quantify brain dynamics.

Unfortunately, in common with other data-driven approaches, e.g.
ICA, the derived spatial patterns are dependent on the choice of cluster
number k in the CAP analysis. To eliminate the bias from choosing spe-
cific k s, we introduce the concept of “overall dominant CAP-set”, which
is a set of CAPs synthesized across the results from different choices of k
s and is representative of brain repertoires across the whole scan.

Specifically, the “overall dominant CAP-set” can be extracted in a
two-stage hierarchical procedure. First, the “dominant CAP-set” associ-
ated with each cluster number k (see Fig. 2) is generated. Briefly, after
re-ranking the CAPs by their temporal fractions (TF) in descending
order — CAP1, CAP2, … CAPk, we calculate the series of temporal frame
averages {Sm}1≤ m ≤ k as:

Sm ¼ ∑1≤ i≤mSMi � T Fi ð1Þ

where SMi is the spatial map of CAPi. The spatial similarity (linear Pear-
son correlation between the spatial patterns, i.e. the intensity patterns
across all the gray matter voxels) of {Sm}1≤ m ≤ k with the overall time
frame average (Sk, i.e. the spatialmap generated by averaging all the ex-
tracted time frames for CAP analysis) is further calculated as {rms }
1≤ m ≤ k. The dominant CAP-set of cluster number k is chosen as the

set of CAPs {CAP j}1≤ j ≤ n with rsn−1br
s
thres
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(where rthress is a fixed threshold to removemiscellaneous CAPswith rel-
atively low temporal fractions, or signal intensities that do not contrib-
ute much to the overall network pattern, and I denotes the indicator
function, i.e. I = 1 when rp

s ≥ rthres
s , 0 otherwise). At the second stage,

themost reproducible pattern (the quantity of CAPs and spatial similar-
ity) among all the dominant CAP-sets (for different k s) derived from the
first stage is chosen as the “overall dominant CAP-set”.

As a synthesized measure, the number of overall dominant CAPs re-
flects the diversity of network patterns (the fewer number of CAPs, the
sparser the dictionary of network patterns), while the spatial consisten-
cy across different CAPs indirectly quantifies the uniformity of brain dy-
namics during CAP alternations (the higher spatial consistency, the less
extreme dynamics that state alternations may incur).

Information in the temporal patterns of CAPs. In addition to the spatial
patterns, the accompanying temporal information may also quantify
the diversity of brain dynamics. A first metric involves the temporal
fractions (TF) of different CAPs, which quantify the number of different
brain functional modes during the scan. A skewed distribution of CAP
TFs, particularly with one (or a few) CAP(s) of overwhelming TF(s),
may correspond to a state with more consistent network patterns
(less dynamic) compared to those with more equally distributed CAP
TFs. A second metric is the frequency of state alternations (FA) in
CAPs. Because every abrupt switch of brain statemay contribute consid-
erable variation to the observed correlation values, a state with more
frequent state alternations may likely be more dynamic compared to
those with fewer alternations of states. Thus, FA can also serve as an in-
formative metric to reveal the relative diversity of brain dynamics.
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