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Rapid perceptual decision-making is believed to depend upon efficient allocation of neural resources to the pro-
cessing of transient stimuliwithin task-relevant contexts. Given decision-makingunder severe timepressure, it is
reasonable to posit that the brain configures itself, prior to processing stimulus information, in a way that de-
pends upon prior beliefs and/or anticipation. However, relatively little is known about such configuration pro-
cesses, how they might be manifested in the human brain, or ultimately how they mediate task performance.
Here we show that network configuration, defined via pre-stimulus functional connectivity measures estimated
from functional magnetic resonance imaging (fMRI) data, is predictive of performance in a time-pressured Go/
No-Go task. Specifically, using connectivity measures to summarize network properties, we show that pre-
stimulus brain state can be used to discriminate behaviorally correct and incorrect trials, as well as behaviorally
correct commission and omission trial categories. More broadly, our results show that pre-stimulus functional
configurations of cortical and sub-cortical networks can be a major determiner of task performance.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Pre-stimulus brain state, measured at a variety of spatial and temporal
scales, has been shown to modulate upcoming task performance. For in-
stance, studies in humans using electroencephalography (EEG) and
magnetoencephalography (MEG) have shown that the power and/or
phase of pre-stimulus alpha oscillations is correlated with performance
(Hanslmayr et al., 2007; Linkenkaer-Hansen et al., 2004; Thut et al.,
2006; Zhang et al., 2008). EEG and MEG, however are inherently limited
by low spatial resolution. Their use for estimating current sources and
scalp-level pre-stimulus modulators are biased toward the strongest cor-
tical sources and typically ignore the interaction between these and
weaker sources, as well as those that may be sub-cortical. Alternatively,
the blood oxygen level dependent (BOLD) signal from functionalmagnet-
ic resonance imaging (fMRI) provideswhole-brain imaging that in theory
provides a functional measurement of pre-stimulus brain state, albeit at a
coarser temporal resolution.Most studies investigating pre-stimulus fMRI
have largely limited their analyses to isolated regions of interest (ROIs)
known a priori to be relevant for a given task (Hesselmann et al., 2008;
Hsieh et al., 2012; Park and Rugg, 2010; Shibata et al., 2008).

Recently, functional connectivity analysis of BOLD signals during
resting state and stimulus presentation has shown that distributed
networks of neural substrates are engaged in both idle and active
modes of attention (Hasson et al., 2012; Honey et al., 2007, 2009;
McIntosh, 1999; McIntosh et al., 1997). For visually driven perceptu-
al decision-making it has been shown that distributed neural sub-
strates affect task difficulty and early visual perception (Hartstra
et al., 2010; Philiastides and Sajda, 2007; Simmonds et al., 2008).
However, characterization of the relationship between these sub-
strates and how interactions between them may impact task perfor-
mance has been lacking.

Here we used whole-brain imaging and graph-based network anal-
ysis to investigate the role of pre-stimulus brain state on task perfor-
mance. Our rationale for this approach is that such a network
characterization of task-relevant neural substrates would capture dis-
tributed BOLD activity across the entire brain. Graph theoretic ap-
proaches have been shown to be useful constructs for characterizing
brain state, where changes in state are reflected in network parameters
and configuration (Bressler and Menon, 2010; Bullmore and Sporns,
2009; Sporns, 2011). Features of the graph that can bemeasured and re-
flect graph/network configuration include, for example, the k-core de-
composition which measures network properties related to node
centrality and connectedness (Alvarez-Hamelin et al., 2008). Another
commonly used approach to assess graph configuration is the random
edge attack (REA),where selected structures of the network are system-
atically removed (Achard et al., 2006; Albert and Barabasi, 2002; van
den Heuvel and Sporns, 2011).

NeuroImage 111 (2015) 513–525

⁎ Corresponding author at: Martinez-Conde Laboratory Department of Ophthalmology
SUNY DownstateMedical Center 450 Clarkson Avenue, MSC 58 Brooklyn, NY 11203-2012,
USA.

E-mail addresses: jason.sherwin@downstate.edu (J.S. Sherwin),
jsm2112@columbia.edu (J. Muraskin), psajda@columbia.edu (P. Sajda).

1 Tel: +1 (718) 221 5389.

http://dx.doi.org/10.1016/j.neuroimage.2015.01.023
1053-8119/© 2015 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.01.023&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2015.01.023
mailto:jason.sherwin@downstate.edu
mailto:jsm2112@columbia.edu
mailto:psajda@columbia.edu
http://dx.doi.org/10.1016/j.neuroimage.2015.01.023
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg


The specific graph theoretic approachwe use is based on thework of
Ekman et al. (2012). Specifically, Ekman et al. used a graph-based net-
work analysis to study task related network configurations in motion/
color perceptual decisionmaking. While novel in its techniques and ex-
perimental design, this study utilized stimuli known to activate particu-
lar ROIs (e.g., V4 for color perception and MT for motion perception).
These ROIs were found with a task-driven algorithm, so the computa-
tionally expensive and exploratory step of calculating pairwise connec-
tivity between all fMRI voxels (N~20,000 in standard MNI space) was
not required. While the a priori functional information did not guide
their algorithm, it provided a useful check on its veracity. Their graph-
based approach further separated pre-stimulus networks into core
and periphery sub-networks, showing that such distinctions could be
used to isolate task-specific regions (e.g., V4 and MT) and task-general
brain regions (e.g., frontal cortices), whose functional properties could
be differentiated using standard graph theorymeasures, such as degree,
efficiency and betweenness centrality. Such analyses build on the ‘rich-
club’ concept that brain networks are functionally mediated by densely
connected central hubs (van den Heuvel and Sporns, 2011).

The work we present here uses this graph-based approach to investi-
gate the role of pre-stimulus network configuration on task performance
given a rapid evidence accumulation decision-making (READ-M) para-
digm. The READ-Mparadigm requires subjects to employ visualmemory,
motion assessment, and a rapid behavioral response or inhibition of re-
sponse, allwhile under timepressure.We refer to this as ‘the baseball par-
adigm’ as it requires the subject to judge whether a simulated trajectory
of a circular object matches or does not match a pre-stimulus trajectory
cue. As in the game of baseball, the subject – or ‘hitter’ –must rapidly de-
cide his/her course of action (or inhibition of action) given a fast-moving
visual stimulus. This entire process typically takes less than half a second.
Previous studies have shown that this paradigm engages anatomically
separated neural substrates during stimulus perception and subsequent
decision formation (Ekman et al., 2012; Sherwin et al., 2012). This para-
digm also falls into the general class of Go/No-Go tasks, which have
been shown to involve local and distant brain regions, such as the inhibi-
tion network for No-Go and an execution network for Go decisions
(Simmonds et al., 2008). Our hypothesis is that the pre-stimulus configu-
ration of brain networks, represented via these graphical constructs,
switch configuration based on the subject's anticipation of the trajectory
cue and that this switch subsequently predicts task performance.

Materials and methods

Subjects

Eleven subjects participated in the study (all male, mean age= 21.6
years, range = 18–30 years). None of the subjects had professional or
collegiate baseball experience. All subjects reported normal or corrected
vision and no history of neurological problems. Informed consent was
obtained from all participants in accordancewith the guidelines and ap-
proval of the Columbia University Institutional Review Board.

Stimuli overview

For the visual stimulus, subjects viewed 5 blocks of 90 simulated
baseball pitches (see pitch simulations below) on a computer monitor
with a mean jittered inter-stimulus interval (ISI) of mean = 3000 ms,
SE = 225 ms. The ISI and stimulus presentation was optimized using
optseq2 program (Dale, 1999). This program is a tool for automatically
scheduling events for rapid-presentation event-related fMRI experi-
ments and it jitters the events such that the overlap in estimated hemo-
dynamic response is removed. Subjects viewed the paradigm through
VisuaStim Digital System (Resonance Technology) 600 × 800 goggle
display. The simulated view was that of where the catcher would sit
on a standard baseball diamond, i.e., at the end point of the pitch trajec-
tory (horizontal view 3.93°, vertical view 1.12°).

Pitch simulations

Each simulated pitch was identified only by its trajectory, although
in real-life baseball hitting the pitch is identifiable by other features,
such as spin. Henceforth, we refer to ‘pitch’ and ‘trajectory’ synony-
mously. This trajectory moved within the plane of the screen and simu-
lated movement in the direction perpendicular to this plane. For each
frame of the simulated pitch, an isoluminant green circle was plotted
on a gray background. The size of the circle increased as it approached
the viewer, so as to give the illusion of depth. When the ball crossed
‘home plate,’ the circle disappeared.

As in previouswork (Muraskin et al., 2013; Sherwin et al., 2012) using
a related paradigm, each pitch was created in three dimensions of space
using a differential equation solver in Matlab 2010a (Mathworks, Natick,
MA, USA) (see pitch simulations below) and presented via PsychToolbox
(Brainard, 1997; Pelli, 1997).

Most baseball pitches can be simulated using 6-coupled differential
equations (Adair, 1995; Armenti, 1992) and we used these equations
to simulate each pitch.

Equations of motion for simulated pitch trajectories:

dx
dt

¼ vx ð1Þ

dy
dt

¼ vy ð2Þ

dy
dt

¼ vz ð3Þ

dvx
dt

¼ −F vð Þvvx þ Bω vz sinϕ−vy cosϕ
� �

ð4Þ

dvy
dt

¼ −F vð Þvvy þ Bωvx cosϕ ð5Þ

dvz
dt

¼ −g−F vð Þvvz−Bωvx sinϕ ð6Þ

F vð Þ ¼ 0:0039þ 0:0058
1þ e v−vdð Þ=Δ : ð7Þ

The first three equations specify the change in spatial location in
each direction, which equals the velocity of the baseball. The last four
equations specify the accelerations due to the drag (F(v)), the Magnus
force (B), and gravity (g) acting on the baseball. After specifying the
initial conditions (x0, y0, z0, vx0, vy0, vz0, ω (rotational frequency)), the
6 ordinary differential equations were solved in MATLAB.

We simulated three different pitch categories with these equations.
The three pitch categories – fastball, curveball, and slider – have well-
defined individual initial conditions. To create each pitch category, we
varied the initial velocity and the rotation angle. We also varied pitches
within each category so that no two pitches from the same category
followed the exact same trajectory. To this end, the initial conditions
of the trajectory were also jittered within each pitch category.

Behavioral paradigm

Subjects were presentedwith a pitch chosen at pseudorandom from
the three pitch categories (here, ‘fastballs’, ‘curveballs’ and ‘sliders’).
Preceding the pitch, a horizontal bar (horizontal extent 3.93°, vertical
extent 0.28°) appeared onscreen for a mean time of 819 ms, SD =
3.1 ms, during which time the horizontal length of the bar shrunk at a
constant rate until it disappeared. For pitches coming from a right-
handed pitcher, the horizontal bar shrank in size to the left; vice versa
for pitches from a left-handed pitcher. Once the bar shrank completely
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