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Causal terminology is often introduced in the interpretation of encoding and decoding models trained on neuro-
imaging data. In this article, we investigate which causal statements are warranted and which ones are not sup-
ported by empirical evidence. We argue that the distinction between encoding and decoding models is not
sufficient for this purpose: relevant features in encoding and decoding models carry a different meaning in
stimulus- and in response-based experimental paradigms.We show that only encoding models in the
stimulus-based setting support unambiguous causal interpretations. By combining encoding and decoding
models trained on the samedata, however,we obtain insights into causal relations beyond those that are implied
by each individual model type. We illustrate the empirical relevance of our theoretical findings on EEG data re-
corded during a visuo-motor learning task.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The question how neural activity gives rise to cognition is arguably
one of the most interesting problems in neuroimaging (Hamann, 2001;
Ward, 2003; Atlas et al., 2010). Neuroimaging studies per se, however,
only provide insights into neuralcorrelates but not into neural causes of
cognition (Ward, 2003; Rees et al., 2002). Nevertheless, causal terminol-
ogy is often introduced in the interpretation of neuroimaging data. For
instance, Hamann writes in a review on the neural mechanisms of emo-
tional memory that “Hippocampal activity in this study was correlated
with amygdala activity, supporting the view that the amygdala enhances
explicit memory bymodulating activity in the hippocampus” (Hamann,
2001), andMyers et al. note in a study onworkingmemory that “we test-
ed […] whether pre-stimulus alpha oscillations measured with electro-
encephalography (EEG) influence the encoding of items into working
memory” (Myers et al., 2014) (our emphasis of causal terminology).
The apparent contradiction between the prevalent use of causal termi-
nology and the correlational nature of neuroimaging studies gives rise
to the following question: which causal statements are and whichones
are not supported by empirical evidence?

We argue that the answer to this question depends on the
experimental setting and on the type of model used in the analysis of
neuroimaging data. Neuroimaging distinguishes between encoding
and decoding models (Naselaris et al., 2011), known in machine learn-
ing as generative and discriminative models (Jordan, 2002). Encoding
models predict brain states, e. g. BOLD activity measured by fMRI or
event-related potentials measured by EEG/MEG, from experimental
conditions (Friston et al., 1994, 2003; David et al., 2006). Decoding
models use machine learning algorithms to quantify the probability of
an experimental condition given a brain state feature vector (Mitchell
et al., 2004; Pereira et al., 2009). Several recent publications have ad-
dressed the interpretation of encoding and decoding models in neuro-
imaging, discussing topics such as potential confounds (Todd et al.,
2013; Woolgar et al., 2014), the dimensionality of the neural code
(Davis et al., 2014), and the relation of linear encoding and decoding
models (Haufe et al., 2014).We contribute to this discussion by investi-
gating, for each type of model, which causal statements are warranted
andwhich ones are not supported by empirical evidence. Our investiga-
tion is based on the seminal work by Pearl (2000) and Spirtes et al.
(2000) on causal inference (cf. (Ramsey et al., 2010; Grosse-Wentrup
et al., 2011; Waldorp et al., 2011; Mumford and Ramsey, 2014) for ap-
plications of this framework in neuroimaging).We find that the distinc-
tion between encoding and decoding models is not sufficient for this
investigation. It is further necessary to consider whether models work
in causal or anti-causal direction, i. e. whether they model the effect of
a cause or the cause of an effect (Schölkopf et al., 2012). To accommo-
date this distinction, we distinguish between stimulus- and response-
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based paradigms. We then provide causal interpretation rules for each
combination of experimental setting (stimulus- or response-based)
andmodel type (encoding or decoding).We find that when considering
one model at a time, only encoding models in stimulus-based experi-
mental paradigms support unambiguous causal statements. Also, we
demonstrate that by comparing encoding and decoding models trained
on the same data, experimentally testable conditions can be identified
that provide further insights into causal structure. These results enable
us to reinterpret previous work on the relation of encoding and
decoding models in a causal framework (Todd et al., 2013; Woolgar
et al., 2014; Haufe et al., 2014).

The empirical relevance of our theoretical results is illustrated
on EEG data recorded during a visuo-motor learning task. We
demonstrate that an encoding model allows us to determine EEG
features that are effects of the instruction to rest or to plan a
reaching movement, but does not enable us to distinguish between
direct and indirect effects. By comparing relevant features in an
encoding and a decoding model, we provide empirical evidence
that sensorimotor μ- and/or occipital α-rhythms(8–14 Hz) are di-
rect effects, while brain rhythms in higher cortical areas, including
precuneus and anterior cingulate cortex, respond to the instruction
to plan a reaching movement only as a result of the modulation by
other cortical processes.

We note that while we have chosen to illustrate the empirical signif-
icance of our results on neuroimaging data, and specifically on EEG
recordings, the provided causal interpretation rules apply to any
encoding and decoding model trained on experimental data. This pro-
vides a guideline to researchers on how (not) to interpret encoding
and decoding models when investigating the neural basis of cognition.
A preliminary version of this work has been presented in Weichwald
et al. (2014).

2. Methods

We begin this section by introducing the causal framework by Pearl
(2000) and Spirtes et al. (2000) that our work is based on (Section 2.1)
and demonstrate how it leads to testable predictions for the causal
statements cited in the introduction (Section 2.2). We then introduce
the distinction between causal and anti-causal encoding and decoding
models (Section 2.3) and establish a connection between these models
and causal inference (Section 2.4). This connection enables us to present
the causal interpretation rules for encoding and decoding models in
Section 2.5. In Section 2.6, we show that combining an encoding and a
decoding model trained on the same data can provide further insights
into causal structure. We conclude this section by providing a reinter-
pretation of previouswork on encoding anddecodingmodels in a causal
framework (Section 2.7).

2.1. Causal Bayesian Networks

By Xwe denote the finite set of d random variables representing the
brain state features, i. e. X = {X1,…, Xd} While these variables may cor-
respond to any type of independent and identically distributed (iid)
samples of d brain state features, it is helpful to consider bandpower fea-
tures of different EEG channels, trial-averaged BOLD activity at various
cortical locations, or mean spike rates of multiple neurons as possible
examples. By Cwe denote the random variable representing the (usual-
ly discrete) experimental condition. C stands for a stimulus (C≡ S) or re-
sponse (C ≡ R) variable and it will be made clear when C is restricted to
either particular case. For convenience, we denote the set of all random

variables by X̂ ¼ C;X1;…;Xdf g. Throughout this article, we denotemar-
ginal, conditional and joint distributions by P(X), P(X|C) and P(X, C), re-
spectively (overloading the notation of P). For our theoretical
investigations, we assume that the involved distributions have proba-
bility mass or density functions (PMFs or PDFs) with values denoted

by P(x), P(x|c) and P(x, c) respectively, again overloading the notation
of P while it is always clear from the argument which function is
meant. We use the common notations for independence and condition-
al independence:

In the framework of Causal Bayesian Networks (CBNs) (Pearl, 2000;
Spirtes et al., 2000), a variable Xi is said to be a cause of another variable
Xj if the distributions (PXj|do(Xi = xi)) are sensitive to xi (cf. Pearl,
2000,p. 24f.). In this notation, the intervention do(Xi = xi) signifies
that Xi is externally set to a constant xi, possibly resulting in a change
of the distribution of Xj. The framework of CBNs thus defines cause-
effect relations in terms of the impact of external manipulations. This
is in contrast to frameworks that define causality in terms of informa-
tion transfer (Granger, 1969; Roebroeck et al., 2005; Lizier and
Prokopenko, 2010).

Causal relations between variables in CBNs are represented by di-
rected acyclic graphs (DAGs). If we find a directed edge Xi → Xj, we
call Xi a direct cause of Xj and Xj a direct effect of Xi. In case there is no
directed edge but at least one directed path , we call Xi an indi-
rect cause of Xj and Xj an indirect effect of Xi. Note that the terms (in-)di-

rect cause/effect depend on the set X̂ of observed variables: consider

X̂ ¼ C; X1; X2f g and the causal DAG C → X1 → X2. Then

and C → X2 wrt. X̂, while C → X2 wrt. X̂
0 ¼ C; X2f g. That is, whether

a cause or effect is direct or indirect depends on the set of observed
brain state features. We omit the considered set of nodes if it is clear
from the context.

To establish a link between conditional independences and DAGs
the following concepts are required:

• d-separation: Disjoint sets of nodes A and B are d-separated by another
disjoint set of nodes C if and only if all a∈ A and b∈ B are d-separated
by C. Two nodes a ≠ b are d-separated by C if and only if every path
between a and b is blocked by C. A path between nodes a and b is
blocked by C if and only if there is an intermediate node z on the
path such that (i) z ∈ C and z is a tail-to-tail (←z→) or head-to-tail
(→z→) or (ii) z is head-to-head (→z←) and neither z nor any of its
descendants is in C.

• Causal Markov Condition (CMC): The CMC expresses the notion that
each node in a causal DAG becomes independent of its non-
descendants given its direct causes, i. e. that the causal structure
implies certain (conditional) independences.

• Faithfulness: The faithfulness assumption states that all (conditional)
independences between the random variables of a DAG are implied
by its causal structure, i. e. there are no more (conditional) indepen-
dences than those implied by the CMC.

Assuming faithfulness and the causal Markov condition, d-
separation is equivalent to conditional independence, i. e. C d-
separates A and B if and only if A and B are independent given C
(Spirtes et al., 2000). The following three examples are the most rele-
vant instances of d-separation for our following arguments. Firstly, con-
sider the chain X0→ X1→ X2. Here, X1 d-separates X0 andX2 by blocking
the directed path from X0 to X2. This implies that . Secondly,
consider the fork X0 ← X1 → X2. Here, X1 d-separates X0 and X2, as X1

is a joint cause of X0 and X2. This again implies that . Thirdly,
consider the collider X0 → X1 ← X2. In this case, X1 does not d-separate
X0 and X2. As X1 is a joint effect of X0 and X2, it unblocks the previously
blocked path between X0 and X2, implying that .

The equivalence between d-separation and conditional indepen-

dence enables us to infer causal relations between variables in X̂ from
observational data. By identifying conditional independences that hold
in our data, and mapping them onto the equivalent d-separations, we
gain knowledge about the causal structures that can give rise to our
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