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16A single diffusionMRI streamline fiber tracking datasetmay contain hundreds of thousands, and oftenmillions of
17streamlines and can take up to several gigabytes of memory. This amount of data is not only heavy to compute,
18but also difficult to visualize and hard to store on disk (especially when dealingwith a collection of brains). These
19problems call for a fiber-specific compression format that simplifies its manipulation. As of today, no fiber
20compression format has yet been adopted and the need for it is now becoming an issue for future connectomics
21research. In this work, we propose a new compression format, .zfib, for streamline tractography datasets
22reconstructed from diffusion magnetic resonance imaging (dMRI). Tracts contain a large amount of redundant
23information and are relatively smooth. Hence, they are highly compressible. The proposedmethod is a processing
24pipeline containing a linearization, a quantization and an encoding step. Our pipeline is tested and validated
25under a wide range of DTI and HARDI tractography configurations (step size, streamline number, deterministic
26and probabilistic tracking) and compression options. Similar to JPEG, the user has one parameter to select: a
27worst-case maximum tolerance error in millimeter (mm). Overall, we find a compression factor of more than
2896% for a maximum error of 0.1 mm without any perceptual change or Q8change of diffusion statistics (mean
29fractional anisotropy and mean diffusivity) along bundles. This opens new opportunities for connectomics and
30tractometry applications.
31© 2014 Elsevier Inc. All rights reserved.
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36 1. Introduction

37 Diffusion magnetic resonance imaging (dMRI) tractography is an
38 increasingly popular research area that helps inQ9 understanding struc-
39 tural connectivity between brain regions. The great success of dMRI
40 tractography comes from its capability to accurately describe some
41 of the neural architecture in vivo (Descoteaux and Poupon, 2014).
42 Streamline fiber tracking datasets contain thousands, if not millions
43 of streamlines and each streamline contains hundreds to thousands
44 of 3D points. These streamlines are often called “tracts”. Here, we pre-
45 fer to use the term streamline for a set of 3D points that represent
46 virtual anatomical fiber representations (Côté et al., 2013). For exam-
47 ple, a dataset generated with the deterministic DTI (or tensorline) al-
48 gorithm (Weinstein et al., 1999; Lazar et al., 2003) using a 0.2 mm
49 step size and 500,000 streamlines requires roughly 1.3 gigabytes
50 (GB) of space.
51 As such, some datasets are so large that they cannot be visualized
52 due to the limited amount of RAM (Random Access Memory) available
53 on most computers. Thus, visualization, storage, and handling of such a
54 dataset require heavy processing and a lot ofmemory. Unfortunately, no

55fiber compression format has yet been adopted and the need for it is
56now becoming a glaring issue for future research.
57Compression algorithms are categorized into two distinct families,
58lossy and lossless. Lossless data compression algorithms allow the origi-
59nal signal (or document) to be recovered from the compressed onewith
60no loss of quality (Nelson and Jean-Loup, 1995; Sayood, 2006; Salomon
61and Motta, 2010). ZIP, GIF and PNG (Taubman and Marcellin, 2002;
62Sayood, 2006; Schelkens et al., 2009; Salomon and Motta, 2010) file
63formats are typical examples of lossless compression algorithms. On
64the other hand, lossy algorithms perform a compression by removing
65elements from the original signal. Hence, the exact original data cannot
66be retrieved from the compressed version (Nelson and Jean-Loup, 1995;
67Sayood, 2006; Salomon andMotta, 2010). Multimedia file formats such
68asmp3, JPEG andMPEG are typically associated to lossy compression. As
69opposed to lossless compression, lossy compression techniques have no
70limit on the amount by which they can compress a signal. Lossy com-
71pression thus involves a trade-off between quality and compression
72ratio (Nelson and Jean-Loup, 1995; Sayood, 2006; Salomon and Motta,
732010).
74What differentiates a lossy compressionmethod fromanother one is
75often the end application it was designed for. Although mp3, JPEG and
76MPEG share a common ground, they nonetheless have their own speci-
77fications. Due to the very nature of their signal, compression methods
78used for audio files (1D), image files (2D) or movie files (2D + time)
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79 cannot be used interchangeably without significant modification. The
80 situation is the same with streamline tracking datasets which also call
81 for an application-specific compression scheme. Blindly applying a com-
82 pression method to a streamline dataset could only lead to sub-optimal
83 results.
84 Streamlines are 3D curves represented as a collection of 3D points.
85 Unlike voice and music, streamlines are both smooth and defined in a
86 3D space. Unlike images and videos, streamlines are not defined over
87 a regular lattice and, most importantly, are not functions of space. Neu-
88 roimaging tracking applications have also their own specifications. One
89 important feature for a streamline compression method is to preserve
90 perfect accuracy at the end points. Formanyneuroimaging applications,
91 the accuracy of the starting and ending points is more important than
92 any other points along the curve (e.g. connectomics). On the other
93 hand, for neurosurgical planning (Chamberland and Descoteaux,
94 2012; Fortin et al., 2012), the full path is of interest and the error must
95 be controlled. Also, unlike JPEG or MPEG, whose focus is to keep low
96 visual compression artifacts, streamline datasets are meant for medical
97 applications where qualitative perceptual errors are not a primary
98 factor. Instead, medical users prefer to account for compression errors
99 quantified in millimeters.
100 The aim of this work is to provide a new lossy compression format
101 called .zfib for streamline tracking datasets. We propose a complete,
102 simple and powerful compression scheme validated under a wide
103 range of tractography configurations and compression options. We
104 demonstrate that streamlines are smooth and often represented
105 with a large number of points that can be removed without changing
106 the pictorial view of streamlines on the screen nor changing the aver-
107 age fractional anisotropy (FA) and mean diffusivity (MD) along white
108 matter bundles. Careful experiments are performed on real datasets
109 of different sizes (24 megabytes (MB) to 15 GB), from different
110 tractography algorithms (deterministic HARDI, probabilistic HARDI,
111 and deterministic DTI1),Q10 different step sizes (0.1 to 1 mm) and differ-
112 ent number of streamlines (60,000 to 3,000,000). Overall, with a
113 0.1 mm maximum error, which is very small considering the voxel
114 size (usually 2 mm isotropic), we can reach a compression ratio of
115 more than 96%.
116 Our findings open new perspectives for future connectomics and
117 group studies using tractography results with large number of stream-
118 lines (Hagmann et al., 2008; Honey et al., 2009) but also for future
119 tractography methods. Datasets of several gigabytes of memory that
120 were before impossible to visualize and hard to store on disk may
121 now be visualized and stored with only few megabytes of memory.
122 For example, the 3,000,000 deterministic DTI and probabilistic HARDI
123 streamline files of size 7.83 GB and 5.92 GB respectively, can be com-
124 pressed down to 95.6 MB and 94.4 MB respectively with a maximum
125 error of 0.5 mm.
126 The remainder of this paper is organized as follows. In Section 2,
127 we introduce a generic four-step compression pipeline made of a lin-
128 earization step, a transformation/approximation step, a quantization
129 step, and an encoding step. These steps are commonly used in well-
130 known compression algorithms such as mp3 and JPEG (Pennebaker
131 and Mitchell, 1993; Sayood, 2006, Chap. 13; Salomon and Motta,
132 2010, Chap. 7; Nelson and Jean-Loup, 1995, Chap. 11). Since these
133 steps can accommodate different algorithms and include a variety of
134 parameters, Sections 3 and 4 thoroughly validate the impact of each
135 step on compression ratios, speed, and accuracy on a variety of
136 streamline datasets. In Section 5, we discuss the results as well as
137 the pros and cons of every step. We then present the final compres-
138 sion algorithm and provide parameters which produce high compres-
139 sion ratios, low processing time, and high accuracy. We then draw
140 conclusions in Section 6.

1412. Methodology

1422.1. Definitions

143Afiber tracking dataset is a set of 3D curves inwhich each streamline
144is represented as a series of 3D points. The definitions used in this paper
145are as follows:

146• Streamline point: A point in 3D space, pi = (xi, yi, zi) ∈ R3.
147• Streamline: a curve in 3D space containing a finite, ordered and
148connected sequence of 3D points fi = {p1, …, pk}.
149• Fiber tracking dataset: A set of streamlines Fn = { f1,…, fn} for a finite
150n ∈ N.
151• |. |: Cardinality operator which returns number of elements in a set or
152a sequence. For example, |f| stands for the total number of points pi in
153the streamline f.
154

1552.2. Piece-wise linearization of streamlines

156Tractography algorithms find structural white matter connections
157by following the principal directions of diffusion at each voxel
158(Descoteaux and Poupon, 2014). One important tractography parame-
159ter is the step size δ. Step size determines the distance between two
160consecutive points pi and pi + 1. As such, a small δ leads to a tight set
161of points pi for each streamline. This implies that more points among
162each streamline are likely to be collinear in space. Hence, removing
163some collinear points would produce a compression without affecting
164much the accuracy of the data. Decreasing the number of points not
165only helps in Q11reducing the file size, it also allows for faster rendering
166and the use of less RAM at runtime. In fact, this step could even be intro-
167duced within tractography algorithms themselves.
168The goal of this step is to remove asmany points as possible within a
169certain margin of millimetric error (ϵ mm). This is achieved with a
170piece-wise linearization procedure over each streamline according to
171a tolerance error, ε. Thus, depending on how severely the streamlines
172are linearized, the pictorial view of streamlines remains almost
173unchanged.

174Formally, f̂ is a valid linearized version of f (the raw input stream-
175line) according to a tolerance value ϵ if and only if every point pi ∈ f
176respects the following constraint:

∀pi ∈ f : dist f̂ ;pi
� �

b ε
i ¼ 1;…; j f j;

ð1Þ

178178where dist is the shortest distance between a streamline point pi and the

corresponding fiber f̂ . In otherwords, f̂ is a valid linearized version of f if

179one cannot remove a point from f̂ without creating an error of more
180than ϵ mm.
181Fig. 1 illustrates the linearization process for different ϵ values. The

182reader shall note that f̂ always contains the starting and the ending
183points p1 and p|f| of f. Hence, the accuracy of the end points is preserved,
184which is crucial not to change the connectivity profile of the
185tractography dataset.

1862.3. Streamline transformation and approximation

187A signal transformation is a generic term to describe a reversible
188mathematical operation which projects a signal from a set of basis
189functions to another set of basis functions. These basis functions define
190the domain on which the signal is represented. For example, a Fourier
191transformation converts a signal from a spatial domain to a frequency
192domain, and vice versa. A transformation function does not compress
193data per se. It rather concentrates its energy on a smaller number of1 DTI: Diffusion Tensor Imaging HARDI: High-Angular-Resolution Diffusion Imaging.
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