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It is well established that it is possible to observe spontaneous, highly structured, fluctuations in human brain ac-
tivity from functional magnetic resonance imaging (fMRI) when the subject is ‘at rest’. However, characterising
this activity in an interpretable manner is still a very open problem.
In this paper, we introduce a method for identifying modes of coherent activity from resting state fMRI (rfMRI)
data. Our model characterises a mode as the outer product of a spatial map and a time course, constrained by
the nature of both the between-subject variation and the effect of the haemodynamic response function. This
is presented as a probabilistic generative model within a variational framework that allows Bayesian inference,
even on voxelwise rfMRI data. Furthermore, using this approach it becomes possible to infer distinct extended
modes that are correlated with each other in space and time, a property which we believe is neuroscientifically
desirable.
We assess the performance of our model on both simulated data and high quality rfMRI data from the Human
Connectome Project, and contrast its propertieswith those of both spatial and temporal independent component
analysis (ICA). We show that our method is able to stably infer sets of modes with complex spatio-temporal
interactions and spatial differences between subjects.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

Using resting state fMRI it is possible to generate enormously rich
data sets that capture some of the complexity of the brain's intrinsic dy-
namics and connectivity. However, generating representations that
meaningfully simplify the data, while still capturing these dynamics, is
an immensely challenging problem.

Initial analyses of rfMRI data focused on finding regions of highly
correlated activity (Biswal et al., 1995), with spatial independent
component analysis (sICA) coming to prominence as a robust method
for extracting regions consistent with knowledge from task analyses
(Kiviniemi et al., 2003; Smith et al., 2009).

Recently, there has been much interest in techniques which analyse
functional connectivity across the brain, including the potentially time-
varying or non-stationary nature of these connections (E.A. Allen et al.,
2014; Baker et al., 2014; Cribben et al., 2012; Seghier and Friston,

2013). However, for all but the simplest analysis techniques it is
necessary to work in a lower dimensional space than the hundreds of
thousands of voxels in a typical rfMRI data set. This is typically achieved
either by extracting parcels from an anatomical atlas, or using high-
dimensional sICA (Kiviniemi et al., 2009; Smith et al., 2013a). However,
it is well known that “[i]nconsistent or imprecise node definitions can
have a major impact on subsequent analyses” (Fornito et al., 2013),
which again throws the question of how best to generate meaningful
representations of resting state activity into sharp relief.

Therefore, an aim has become to find an interpretable and robust
way of representing rfMRI data, at the same time as capturing as
much of the complex temporal dynamics as possible.

Definitions

For this paper, we will use the following definitions. We will take a
network to be a set of interacting elements—synonymous with the
mathematical formalism of a graph as a set of nodes and edges. Func-
tional connections, that is to say the edges between nodes, may vary
in their presence and strength over time.
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Wedefine a parcel to be a set of voxels actingwith a single represen-
tative time course. These are often derived from a ‘hard’ parcellation of
grey matter into multiple non-overlapping regions (Rubinov and
Sporns, 2010; Yeo et al., 2011; Craddock et al., 2012). However, given
the trend for using components from a high-dimensional sICA for con-
nectivity analyses (E.A. Allen et al., 2014; Kiviniemi et al., 2009; Smith
et al., 2013a), we relax this definition slightly. In the spatial domain, a
parcel is taken to represent a set of positive weights, potentially varying
in magnitude, with limited overlap between different parcels. The defi-
nition we have given therefore allows, for example, blurred boundaries
or parcels that contain bilaterally paired regions.

We define a mode as any spatial distribution over the brain that
shares a common time course. This is similar to a parcel, but the defini-
tion iswider as this imposes no restrictions on the spatial properties. For
example, multiple modes can be highly overlapping, and individual
modes can include anti-correlated regions (meaning that some regions
within the mode have a negative spatial weight and others have a pos-
itive one). A mode—as an extended spatial distribution having common
temporal dynamics—can be defined either in terms of a spatial
voxelwise map, or as a weighted set of spatial parcels.

In general, it is possible to take the time courses from either parcels
or modes and use these as the nodes to examine in a subsequent
network analysis, but we will focus on modes here.

Current methods

Many techniques have been proposed to identify modes or parcels.
Perhaps the simplest is to extract time courses from labelled regions
in a pre-defined anatomical atlas, though the validity of this has been
called into question as the correspondence between anatomical land-
marks and functional regions is unclear (Fornito et al., 2013). The obvi-
ous alternative is to use a pre-defined atlas containing regions based on
previous functional studies, an approachwhich is likely to have a higher
validity.

However, the arguable weakness of atlas-based approaches is their
reliance on the registration process to enforce consistency across sub-
jects. There is an enormous amount of interesting structure present in
rfMRI data, and it seems reasonable to assume that this could be
harnessed to inform the specification of functional regions. In fact, one
of the key assertions we make in this paper is that it is possible to at-
tempt to use the characteristics of the rfMRI data to correct for subject
mis-alignments.

There have therefore been a large number of strategies proposed
that attempt to infer functional regions from the data—so called ‘data-
driven’ approaches. Temporally consistent co-activation is the implic-
it assumption that defines both parcels and modes, but by itself this
does not lead to a unique decomposition. Therefore, it is necessary
to add additional constraints to make the inference problem
identifiable.

Themostwidely used data-driven approach is to look formodes that
are independent using ICA. Due to the large numbers of voxels and
relatively few time points of early studies, spatial ICA gave the most ro-
bust decompositions and therefore became the dominant approach.
However, almost as soon as it was introduced, concerns were raised.
Given that “[distinct] large scale neuronal dynamics can share a substan-
tial anatomical infrastructure” (Friston, 1998; Smith et al., 2012), it is un-
clear how well sICA will decompose extended modes that spatially
overlap. These concerns were allayed to some extent by Beckmann
et al., who showed that in the presence of noise ICA components can
still contain strong residual dependencies, and highly correlated maps
can be recovered by a simple thresholding step (Beckmann et al.,
2005). What is perhaps less clear is what, if any, biases are introduced
when the data has a high SNR or when large groups are analysed, both
cases where the inferred maps are expected to contain very little noise.

An alternative approach is to look for temporally independent
modes, which has recently become possible as studies of large cohorts

acquired at low TR have generated enough time points for temporal
ICA (tICA) to operate robustly (Smith et al., 2012), albeit still most
likely requiring the concatenation of several fMRI data sets to
achieve reasonable reproducibility. This allows spatially overlapping
modes to be identified, at the expense of placing restrictions on the
global temporal dynamics—as well as this being a concern in and of
itself, this restriction will also limit any subsequent network analy-
ses of the mode time courses. As Smith et al. discuss, temporally in-
dependent functional modes (TFMs) are forced to have orthogonal
time courses, meaning that further analysis of the temporal interac-
tions between different modes is not straightforward (Smith et al.,
2012).

As well as the choice of spatial or temporal independence, various
extensions have been proposed to extract meaningful subject-specific
information from group ICA decompositions (Damoiseaux et al., 2006;
Filippini et al., 2009; Varoquaux et al., 2010; Erhardt et al., 2011).

While each ICA strategy has its own advantages, the fundamental
issue with all ICA-based approaches is that “it is not clear that, from a
neuroscientific point of view, independence is the right concept to iso-
late brain networks, as no functional system is fully segregated”
(Varoquaux et al., 2010).What is perhaps surprising is how demonstra-
bly well ICA approaches work, given that their central assumptions are
often violated (Hyvärinen, 2013); for example, forms of ICA have been
developed that explicitly incorporate information derived from the re-
sidual statistical dependencies between components (Hyvärinen and
Hoyer, 2000; Hyvärinen et al., 2001). Therefore, while ICA approaches
have been particularly useful for characterising fMRI data, one would
hope that a less restrictive set of assumptions could engender decompo-
sitions with even higher validities.

Other data-driven approaches suggested have had varying degrees
of success. Many are based on machine learning techniques, where
the key assumptions underpinning the algorithms are only loosely re-
lated to the expected properties of rfMRI data. These include clustering
approaches (Yeo et al., 2011; Craddock et al., 2012), regularised variants
of principal component analysis (PCA) (G.I. Allen et al., 2014), non-
negativematrix factorisation (Lee et al., 2011), image gradient detection
in correlation maps (Cohen et al., 2008) and hidden Markov models
(Eavani et al., 2013) to name but a few.

Finally, there are a few approaches which try to explicitly model
rfMRI data. The multi-subject dictionary learning (MSDL) approach of
Varoquaux et al. (2011) forms a model that explicitly looks for modes/
parcels, and there are some conceptual similarities with our approach.
Their algorithm contains a hierarchical model for spatial subject vari-
ability, a constraint favouring simultaneously smooth and sparse spatial
distributions as well as the ability to capture the temporal correlations
between modes.

Due to the similarities between our approaches, we will give a brief
description of themost recent version of theirmodel, of whichmore de-
tails can be found in the work of Abraham et al. (2013). Their spatial
model at the group level is detailed, simultaneously enforcing non-
negativity, sparsity and spatial contiguity. The subject maps are
modelled by including a set of additive, Gaussian-distributed deviations
from the group maps. Their time series model specifies that there
should be a consistent between-mode correlation structure but does
not restrict the form of the time series; therefore, it does not model
any haemodynamic processes. Finally, these constraints are combined
with a noise model, and the resulting cost-function governing their de-
composition is solved with a computationally efficient stochastic gradi-
ent descent approach. The most recent results they report are on an
rfMRI data set consisting of 48 subjects.

In this paper, we develop an analysis technique that explicitly
models some of the key properties of resting state modes within a
Bayesian framework. The Bayesian approach allows very flexible
models to be constructed in a principled manner; crucially, we solve
the system using a variational approach, thereby making the algorithm
efficient enough to work on full fMRI data sets.
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