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A prerequisite for a pattern analysis using functional magnetic resonance imaging (fMRI) data is estimating the
patterns from time series data, which then are input into the pattern analysis. Here we focus on how the combi-
nation of study design (order and spacing of trials) with pattern estimator impacts the Type I error rate of the
subsequent pattern analysis. When Type [ errors are inflated, the results are no longer valid, so this work serves
as a guide for designing and analyzing MVPA studies with controlled false positive rates. The MVPA strategies
examined are pattern classification and similarity, utilizing single trial activation patterns from the same functional
run. Primarily focusing on the Least Squares Single and Least Square All pattern estimators, we show that collinear-
ities in the models, along with temporal autocorrelation, can cause false positive correlations between activation
pattern estimates that adversely impact the false positive rates of pattern similarity and classification analyses. It
may seem intuitive that increasing the interstimulus interval (ISI) would alleviate this issue, but remaining weak
correlations between activation patterns persist and have a strong influence in pattern similarity analyses. Pattern
similarity analyses using only activation patterns estimated from the same functional run of data are susceptible to
inflated false positives unless trials are randomly ordered, with a different randomization for each subject. In other
cases, where there is any structure to trial order, valid pattern similarity analysis results can only be obtained if
similarity computations are restricted to pairs of activation patterns from independent runs. Likewise, for pattern
classification, false positives are minimized when the testing and training sets in cross validation do not contain

patterns estimated from the same run.

© 2014 Published by Elsevier Inc.

Introduction

Traditional data analysis approaches in functional magnetic
resonance imaging (fMRI) often employ voxel-wise models to identify
where in the brain aggregate activation differs between experimental
conditions. A more recently developed set of analysis strategies,
multivoxel pattern analysis (MVPA), often starts with similar voxel-
wise activation estimates, but instead of testing for differences in aggre-
gate activation, focuses on the information contained in the distributed
patterns of activation across voxels (Kriegeskorte et al., 2008a;
Kriegeskorte, 2011; Haxby et al., 2001; Carlson et al., 2003; Pereira
et al,, 2009; Norman et al., 2006; Davis and Poldrack, 2013; Haynes and
Rees, 2006). Multivariate pattern classification and pattern similarity
analyses are two of the most common MVPA strategies. Pattern
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classifiers test whether an activation pattern can be used to decode the
mental state of the subject (Haynes and Rees, 2006; Norman et al.,
2006). In pattern similarity analyses, the goal is often not to simply
decode mental states, but to examine the geometric relationships be-
tween activation patterns for different conditions and stimuli in a task.
To this end, pattern similarity analysis involves computing a similarity
metric between pairwise activation patterns elicited for different condi-
tions or stimuli, and testing how these pattern similarities relate to psy-
chological states, predictions from cognitive models, or patterns elicited
for the same stimuli in non-human primates (Kriegeskorte et al.,
2008a; Kriegeskorte, 2011; Kriegeskorte et al., 2008b; Kriegeskorte and
Kievit, 2013; Davis and Poldrack, 2013). Despite the increasing popular-
ity of MVPA approaches to fMRI analysis, there have been few systematic
studies of how study design impacts results from MVPA.

The present work examines how study design affects estimation of
the activation patterns that serve as inputs into MVPA and subsequent
Type I error rates. We focus on experimental contexts in which the
goal is to accurately estimate separate activation patterns from single
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trials within the same run. For example, if 30 exemplars of each of 2
types of stimuli are presented to a subject in a single functional run,
the goal is to estimate 60 separate activation patterns that are then
input data for a pattern analysis that will attempt to classify or explain
the similarity relationships between these exemplars. Single run analy-
ses are common within the pattern similarity framework and have the
advantage of saving time and money while collecting data. Although
previous work assessed power of single trial parameter estimators
within the pattern classification framework in a between-run setting
(Turner et al., 2012; Mumford et al., 2012), control of Type I error is
more critical since, when not controlled, the resulting statistics are
invalid.! In the case of pattern similarity, Type I error rates will be quan-
tified for analyses that compare similarity distributions for different
pairings of trials from the same run. For pattern classification, Type [
error is assessed by testing whether or not the classification accuracy
of data generated under the null hypothesis is at chance when the
cross validation is performed using trials from the same run.

The primary pattern estimators we examine are the Least Squares All
(LSA) and Least Squares Single (LSS) models (Turner et al., 2012;
Mumford et al., 2012). Both of these models estimate patterns using a
voxelwise general linear model; example design matrices for a single
run that presented 5 exemplars each of 2 stimulus types are illustrated
in Fig. 1. In the case of LSA, all trials are estimated simultaneously in a
single model, using a separate regressor consisting of an impulse (or
boxcar) function convolved with a double gamma hemodynamic re-
sponse function (HRF). This is often referred to as beta-series regression
(Rissman et al., 2004) and the parameters, 3, ..., B1o, €stimate the
activation magnitude for each of the 10 trials within a single voxel.
These estimates are then aggregated over many voxels to comprise
the activation pattern that serves as the input for MVPA. A pitfall of
LSA is when trials have a short interstimulus interval (ISI), e.g., less
than 3 s between the end of one stimulus and onset of the next stimulus,
the regressors become highly correlated, or collinear, which inflates the
variance of the resulting parameter estimates. The LSS model reduces
this collinearity by using a separate model for each trial, in which the
first regressor models the trial of interest and the other two regressors
model the remaining trials according to trial type. For example, assum-
ing that the exemplars were images of mammals or reptiles, the first it-
eration of LSS is modeling the first trial, a mammal, as the first regressor
while the other two regressors model the remaining mammals and re-
maining reptiles, respectively. In this case, only the first parameter esti-
mate is retained in each model and estimates the activation for that
individual trial. Previously, LSS has been shown to produce higher clas-
sification accuracies than LSA for short ISIs (3-5 s) (Mumford et al.,
2012). Although we focus on the LSS and LSA pattern estimators, a
third model that simply takes the time point 6 s after stimulus presen-
tation as the pattern estimate (Add6) is also considered.

We will illustrate how temporal autocorrelation and pattern estima-
tion technique, through correlations between regressors, introduce
false positive correlations between the activation patterns estimated
from the same functional run of BOLD data. These false correlations can
then lead to false positive comparisons in pattern similarity distributions
or inflated classification accuracies. Surprisingly, even with ISIs as long as
15 s, elevated false positive rates occur in pattern similarity analyses,
regardless of which of the three pattern estimators (LSS, LSA, Add6)
are used, unless trials are randomly ordered with a unique randomiza-
tion for each subject. Similar issues arise if the cross validation of a
pattern analysis uses only trials from the same functional run. Hence,
within-run pattern similarity and classification analyses are not
recommended.

After characterizing the pitfalls of single run, or within-run analyses,
we examine whether or not between-run analyses offer reasonable so-
lutions. Between-run analyses require multiple functional runs of BOLD

! Inthese previous studies, Type I error was assessed and found to be controlled, but this
was not reported.
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Fig. 1. Model illustration for LSA and LSS. In both cases, trial-specific activations are
estimated for each of 10 trials and the model is run in a voxel-wise fashion. The left
panel shows Least Squares All (LSA), which estimates all trials simultaneously in a single
regression and the estimates 3, ..., 310 represent the activation magnitudes for each of
the trials. The right panel shows Least Squares Single (LSS) where each trial's activation
is estimated in a separate model where the first regressor represents the trial of interest
and the two additional regressors model the remaining trials according to trial type. In
this case there are 2 trial types. Only the estimates for the first parameter are retained
from each model.

data and, in the pattern similarity setting, similarities are only computed
between activation patterns that were estimated from independent
runs of data. For example, if there are 60 trials per run and two runs,
the pattern from the first trial of run 1 would be correlated with all
other patterns from run 2, only, in a between-run similarity analysis.
For classification, the test and training data sets in the cross validation
would comprise patterns from different runs.

The following section contains a theoretical derivation of the LSS-
and LSA-based pattern estimates to clearly motivate the impact of
study design and temporal autocorrelation on estimated patterns.
Both the Methods and Results sections start with pattern similarity
analyses and end with classification analyses. Within each analysis set-
ting, within-run approaches are studied first, followed by between-run
approaches. This work can be used as a guideline when designing and
implementing future MVPA analyses that will yield valid results.

Derivations

The following derivations were used to generate data for the simula-
tion studies and help in understanding the source of invalid statistics for
within-run pattern analyses. Before deriving the distributions for the
LSS- and LSA-based pattern estimates, we first characterize the distribu-
tion of the BOLD time series, Y, within a single voxel. The data follow a
multilevel structure where one level (Eq. (2)) describes the trial-
specific activations, 3, and the other level (Eq. (1)) describes how
these trial-specific activations are related to the BOLD time series.
Specifically,

Y =XiaB +ey, €~N(0,Vy) (1)

B=u+ep, %NN(Q VB) : @)

Assume that there are N4 total trials presented, 3 is a vector of
length Ny.qs With a true mean of i, also a vector of length N4, and a
covariance following the Neiqis X Niriqis matrix, V. Since Vs is the true
covariance between the trials, it represents the true representational
similarity covariance matrix, from which the pattern similarity correla-
tions can be derived. The vector Y is the voxel-wise time series with
length Ny, and assumes a mean equal to the product of the trial-
specific activation magnitudes, 3, and the trial-specific regressors
following the LSA design matrix (Fig. 1, left panel). The LSA design
matrix consists of a single regressor per trial, where the regressor is
constructed by convolving a delta or boxcar function, depending on
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