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Major Depressive Disorder (MDD) is characterized by rumination. Prior research suggests that resting-state brain
activation reflects rumination when depressed individuals are not task engaged. However, no study has directly
tested this. Here we investigated whether resting-state epochs differ from induced ruminative states for healthy
and depressed individuals. Most previous research on resting-state networks comes from seed-based analyses
with the posterior cingulate cortex (PCC). By contrast, we examined resting state connectivity by using the
complete multivariate connectivity profile (i.e., connections across all brain nodes) and by comparing these
results to seeded analyses.Wefind that unconstrained resting-state intervals differ from active rumination states
in strength of connectivity and that overall connectivity was higher for healthy vs. depressed individuals. Rela-
tionships between connectivity and subjective mood (i.e., behavior) were strongly observed during induced
rumination epochs. Furthermore, connectivity patterns that related to subjective mood were strikingly different
for MDD and healthy control (HC) groups suggesting different mood regulation mechanisms.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Many researchers have found differences in brain connectivity dur-
ing unconstrained “resting-state” intervals between healthy persons
and individuals diagnosed with Major Depressive Disorder (Berman
et al., 2011; Bohr et al., 2012; Broyd et al., 2009; Greicius et al., 2007;
Sheline et al., 2010; Zeng et al., 2012; Zhang et al., 2011). These differ-
ences in brain connectivity are often interpreted as being a neural
mechanism reflecting depressive rumination (Berman et al., 2011;
Greicius et al., 2007; Hamilton et al., 2011; Whitfield-Gabrieli and
Ford, 2012), a negative repetitive thought process that characterizes
depression (Nolen-Hoeksema et al., 2008; Treynor et al., 2003). No re-
search, however, has directly tested whether the thinking during
“rest” is the same as that of directly induced rumination for participants
with depression compared to non-depressed participants. The first goal
of the present study was to investigate whether patterns of functional
connectivity during unconstrained resting-state epochs differed from ac-
tive rumination in depressed and healthy individuals. Uncovering this
would greatly aid our understanding of the neural processes associated

with depressive rumination. To do so, we designed an experimental par-
adigm to assess baseline resting-states and compared those intervals to
induced ruminative states and resting-states that occurred after induced
rumination. The baseline resting-states were first tested so as not to be
contaminated by our induced-rumination procedure.

The second goal of the present studywas to investigate whether dif-
ferent results would be uncovered from seed-based analyses compared
to analyses of the full connectivity profile (i.e., how all brain areas are
connected to all other areas) for healthy controls (HCs) and individuals
diagnosed with depression. There has been some debate in the literature
wheremany studies report hyper-connectivity or hyper-activation in the
default-mode network in MDD (Berman et al., 2011; Broyd et al., 2009;
Greicius et al., 2007; Sheline et al., 2010), whereas other studies find de-
creased connectivity in MDD in a few different resting-state networks
(Veer et al., 2010). Recent studies have found that the full connectivity
profile was highly sensitive in discriminating healthy vs. depressed indi-
viduals at rest (Veer et al., 2010; Zeng et al., 2012). We sought to investi-
gate whether hyper- or hypo-connectivity results depended on whether
analyses were based on singular brain networks or all brain networks in
their totality. To this end,we implemented a seed-based analysiswith the
Posterior Cingulate Cortex (PCC) to focus our analysis on a single net-
work; the “default-mode” network and compared those results to an
analysis where we explored connectivity between all brain nodes.
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To identify global patterns of functional connectivity and how those
patterns differed across groups and cognitive states (resting states and
induced rumination states) we implemented a partial-least squares
analysis (PLS; Krishnan et al., 2011; McIntosh and Lobaugh, 2004;
McIntosh and Misic, 2013). As a multivariate statistical framework,
PLS determines the combination of groups and experimental conditions
that is optimally related to a spatiotemporal pattern of neural activity.
We used PLS in a novel way, by entering functional connections
between all possible pairs of brain regions as dependent variables,
rather than activation contrasts or singular seed correlations, which
are typically used. For the present study, this application of PLS offered
a few important advantages. First, we were able to capture patterns of
functional connections that covary together. Thus, these patterns are
naturally interpretable as coherent functional networks. Second, PLS
offers a framework to examine how these changes in functional connec-
tivity were related to changes in subjective mood, which is rarely per-
formed when examining functional connectivity. Lastly, we were able
to investigate the dominant functional connectivity patterns without
having to specify a priori hypotheses about the differentiation of groups
and experimental conditions. Thus, we used the analysis to determine
the similarities and differences between resting-states and induced ru-
mination in a completely data-driven way.

In summary, we set out to achieve two goals in this study. The first
was to examine whether resting-state epochs differed from induced
rumination states for participants diagnosed with major depression
compared to non-depressed controls. We assessed these potential dif-
ferences both behaviorally andwithmultivariatemeasures of functional
connectivity. The second goal of the study was to assess how different
measures of functional connectivity, i.e. seed-based vs. global connec-
tivity, could help to distinguish the groups during rest vs. induced
rumination.

Materials and methods

Note: These fMRI parameters, task parameters and analysis parame-
ters are similar to those from Misic et al. (in press).

Participants

Seventeen participants diagnosed with clinical depression [mean
age=26.6 years, SD= 5.94; 12 female,meanBeckDepressive Invento-
ry (Beck et al., 1996) (BDI) = 29.8] and seventeen non-depressed con-
trols (mean age = 24.2 years, SD = 5.95; 12 female, mean BDI = 1.4)
participated in our study. Participants' diagnosis of MDD vs. a non-
diagnosis was determined by a trained clinician administering the
Structured Clinical Interview Diagnostic (SCID) IV (Williams et al.,
1992). Five MDD participants were taking antidepressants during scan-
ning. These medications included: Zoloft, Prozac, Levothyroxine,
Renlafaxin, Trazadone, Effexor and Wellbutrin. Three of the five partic-
ipants that were on medications were on more than one medication.
In addition, 14 of the 17 MDD participants were suffering a recurrent
episode. Seven of the 17 MDD participants had a co-morbid diagnosis
of anxiety, panic or social phobia, one participant had co-morbid
diagnosis of an eating disorder, one participant had co-morbid diag-
nosis of PTSD and one participant had co-morbid diagnosis of schizo-
phrenia. One MDD participant was excluded from the fMRI analysis
because of poor segmented normalization (i.e., part of cortex was
segmented off).

The Institutional Review Board of the University of Michigan
approved this study and all participants provided informed consent as
administered by the Institutional Review Board of the University of
Michigan. Participants had to refrain from marijuana use for at least
6 months prior to participation and had to refrain fromalcohol consump-
tion at least 24 h prior to participation. Participants were also excluded if
they had every used illicit drugs (i.e., cocaine, LSD). Participants were
compensated $25/h for their participation.

fMRI acquisition and preprocessing parameters

Images were acquired on a GE Signa 3-Tesla scanner equipped
with a standard quadrature head coil. Functional T2* weighted im-
ages were acquired using a spiral sequence with 40 contiguous slices
with 3.44 × 3.44 × 3mm voxels (repetition time (TR)= 2000ms; echo
time (TE) = 30 ms; flip angle = 90°; field of view (FOV) = 22 cm). A
T1-weighted gradient echo anatomical overlay was acquired using the
same FOV and slices (TR= 250 ms, TE= 5.7 ms, flip angle = 90°). Ad-
ditionally, a 124-slice high-resolution T1-weighted anatomical image
was collected using spoiled-gradient-recalled acquisition (SPGR) in
steady-state imaging (TR = 9 ms, TE = 1.8 ms, flip angle = 15°,
FOV = 25–26 cm, slice thickness = 1.2 mm).

Functional images were corrected for differences in slice timing
using 4-point sinc-interpolation (Oppenheim et al., 1999) and were
corrected for head movement using MCFLIRT (Jenkinson et al., 2002).
To reduce noise from spike artifacts, the data were winsorized prior to
normalization (Lazar et al., 2001) by exploring time courses for each
voxel and finding values that were 3 standard deviations (SDs) away
from the mean of that voxel's time course. Spikes that were above 3
SDs from the mean were made equal to the mean + 3 SDs and spikes
that were 3 SDs below themeanweremade equal to themean− 3 SDs.

Each SPGR anatomical imagewas corrected for signal in-homogeneity
and skull-stripped using FSL's Brain Extraction Tool (Smith et al., 2004).
These images were then segmented with SPM5 (Wellcome Department
of Cognitive Neurology, London) into graymatter, white matter and ce-
rebrospinal fluid and normalization parameters for warping into MNI
space were recorded. These normalization parameters were applied to
the functional images maintaining their original 3.44 × 3.44 × 3 mm
resolution, and then the functional images were spatially smoothed
with a Gaussian kernel of 8 mm.

To correct for physiological artifacts all of our functional data
underwent PHYCAA correction, which removes some known sources
of physiological noise from the data (Churchill et al., 2012). This
model estimates physiological noise components that originate from
consistent brain regions, and have strong temporal autocorrelations.
PHYCAA controls for both global sources of noise present in brain tissue
(e.g. gray and white matters), and noise that is concentrated in the
ventricles andmajor blood vessels (Churchill et al., 2012). This provides
a more conservative approach to removing global noise in the brain,
unlike standard mean regression (Fox et al., 2009), which may have a
partly neuronal basis (Schölvinck, et al., 2010) and can distort connec-
tivity patterns (Saad et al., 2012) particularly when comparing groups
(Gotts et al., 2013). Lastly, corrections based on physiological models
have been previously shown to reduce global confounds while simulta-
neously preserving functional connectivity relationships (Chang and
Glover, 2009).

Furthermore, 24 motion parameters were calculated, which includ-
ed the linear, squared, derivative, and squared derivative of the six
rigid-body movement parameters (Lund et al., 2005). A principal com-
ponent analysis was performed on these 24 motion parameters and
only the first principal component, which accounted for nearly 90% of
the motion variance, was covaried out from each voxel's time course
to remove any signal that could be attributed to motion. Lastly, func-
tional images were parceled into 116 different ROIs based on the AAL
template for analysis.

Task parameters

Participants initially performed two resting-state scans back-to-back
that were 8 min in length. Participants were instructed to look at a fix-
ation cross at the center of the screen and were told not to think
about anything in particular (i.e., they could think about whatever
they wanted to). After acquiring anatomical images of the brain, partic-
ipants were then taken out of the scanner and were asked to generate
four negative autobiographical memories. In order to facilitate the
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