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Diffusion tensor imaging is used to measure the diffusion of water in tissue. The diffusion properties carry infor-
mation about the relative organization and structure of the underlying tissue. In the case of a single voxel contain-
ing both tissue and a fast diffusing component such as free water, a single diffusion tensor is no longer
appropriate. A two-tensor free water elimination model has previously been proposed to correct for the case
of volume mixing. Here, this model was implemented in a straightforward but novel manner without the use
of spatial constraints. The optimal acquisition parameters were investigated through Monte Carlo simulations
and human brain imaging studies. At a signal-to-noise ratio of 40 with 64 diffusion-weighted encoding images,
the most accurate estimates of fast diffusion signal were obtained with two diffusion-weighted shells (b-value
in s/mm2 × number of directions) of 500 × 32 and 1500 × 32. The potential bias in fractional anisotropy
induced by this two-compartment model was more than an order of magnitude less than the error of using
the single diffusion tensor model in the presence of partial volume effects with free water. This strategy may
be useful for characterizing the diffusion of tissues adjacent to cerebral spinal fluid (CSF), tissues affected by
edema, and removing artifacts from blurring and ghosting of the CSF signal.

Published by Elsevier Inc.

Introduction

Diffusion weighted imaging (DWI) is a non-invasive magnetic reso-
nance imaging (MRI) technique capable of measuring properties that
describe the molecular displacements of water in biological tissues.
Diffusion tensor imaging (DTI), an application of DWI, is used to quanti-
fy the three-dimensional movement of water with the assumption that
simple Gaussian diffusion is a good descriptor of the water diffusion
within a voxel (Basser et al., 1994). The most common application of
DTI is brain imaging. In this application, the diffusion information is
used to draw conclusions about brain architecture and microstructure.
DTI has shown a great deal of utility in routine clinical use, as well as
in brain research (Alexander et al., 2007).

The relative ease or resistance to diffusion along any single direc-
tion yields information about tissue structure and organization. Free
water, which is characterized by uninhibited movement, displays iso-
tropic diffusion and an apparent diffusion coefficient (ADC) of roughly

3 × 10−3 mm2/s (Alexander et al., 2001). Meanwhile, more structured
tissue such as white matter (WM) displays distinctly anisotropic diffu-
sion. In the brain, free water exists as cerebral spinal fluid (CSF) in the
ventricles and bordering the parenchyma of the brain. Gray matter
(GM) is characterized by a lower degree of anisotropy than white mat-
ter, as well asmore hindered diffusion than CSF. GM andWMboth have
an ADC of approximately 0.8 × 10−3 mm2/s (Sener, 2001).

The freewater elimination (FWE)model seeks to remove the delete-
rious effect of CSF partial volume effects on diffusion measurements.
While the initial description of this two-compartment diffusion model
was described using multiple b-values (Pierpaoli and Jones, 2004),
more recent implementations estimated the fast diffusing component
using only a single b-value acquisition with local spatial constraints
on the model (Pasternak et al., 2009). This approach is ill-posed
without these constraints and assumptions. The FWE model is solv-
able using multiple b-value measurements, yet few studies have ap-
plied these schemes for DTI (Pasternak et al., 2012a). None of these
implementations have undertaken a rigorous assessment of the accura-
cy of the FWE fitting. Likewise, a determination of the best acquisition
parameters has not been investigated. This work sets out to determine
the accuracy and reliability of the fitting as well as what acquisition is
best suited to fitting the FWE model.
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Recent work withmore advanced diffusionmodels such as diffusion
basis spectrum imaging (DBSI) (Wang et al., 2011), neurite orientation
distribution diffusion imaging (NODDI) (Zhang et al., 2012), multiple
fascicle models (Scherrer and Warfield, 2012), and combined hindered
and restricted diffusion (CHARMED) imaging (Assaf et al., 2004) have
included an isotropic free water component in their models. While
there is growing interest in these complex models of diffusion for char-
acterizing brain tissue microstructure, the acquisition times are long
and computational demands for these models are high relative to clini-
cal DTI protocols. However, the simple DTImodelwith an additional fast
diffusion compartment may provide a rapid and simple model for esti-
mating and removing fast diffusion effects in many DWI studies.

This work sets out to develop a relatively simple, yet novel, method
for estimating the fast diffusing component and the underlying tissue
parameters. The DWI protocol for the FWE DTI model was optimized
through successive simulations that took into account different experi-
mentally realistic factors in the optimization. All the while, clinical
feasibility, as defined by a maximum of 70 DWI measurements, was
maintained. Thus, the number of gradient directions was fixed at 64
and 6 b = 0 images, which corresponded to a minimum whole-brain
imaging time of 6 min and 30 s at 2.5 mm isotropic resolution on our
MRI system.

Materials and methods

In this section we introduce our two-compartment FWE DTI model
and describe two independent, but complimentary methods to solve
the FWE DTI model. The first method is a weighted linear least squares
method using a brute force region contraction approach to solve for the
freewater component. Although not as robust or accurate as our second
approach, this method has the advantage of being computationally effi-
cient and serveswell as either a stand-alone estimate or the initial guess
for non-linear search methods. The second model is a modified
Newton's method approach (Koay et al., 2006) with a dynamically ad-
justed dampening parameter to control step size and direction.

Free water elimination model

Errors arise in DTI when the tissue within a single voxel is a mixture
of multiple tissue types resulting in partial volume effects (Alexander
et al., 2001). A two-compartmentmodel has been used previously to es-
timate the diffusion characteristics of brain tissue in the presence of the
partial volume effect with a fast diffusing component such as free water
(Pierpaoli and Jones, 2004). The tissue compartment, which could be
white or gray matter, is modeled as a tensor just as in DTI. The fast dif-
fusing compartment is modeled as having isotropic diffusion with a
fixed diffusivity equal to the theoretical expected diffusivity of unhin-
dered water at body temperature. The relative signal contribution of
the fast diffusing component is described by f, a scalar volume fraction.
The free water elimination DTI signal model is described by

Si ¼ S0 1− fð Þ exp −big
T
i Dtissuegi

� �
þ f exp −bDisoð Þ

h i
ð1Þ

where, Si and S0 are the signal from the i-th diffusion and non-diffusion
weighted measurements, respectively, Diso = 3 × 10−3 mm2/s is the
free water diffusivity, Dtissue is the tissue diffusion tensor, bi and gi are
the diffusion-weighting amplitude (in mm2/s) and unit gradient
encoding vector, respectively. This two-compartment model is attrac-
tive because of its similarity to DTI. The tissue signal compartment re-
sults in the same scalar metrics of DTI. The addition of the isotropic
compartment is intended to compensate for confounding partial vol-
ume effects from CSF and also edema. This will improve the ability to
characterize tissue parenchyma microstructure in voxels with partial
volume averaging and multiple diffusion components.

Fitting procedures

Initially the tissue compartment tensor was fit using a weighted
linear least squares (WLLS) region contraction approach. This was ac-
complished by recasting Eq. (1) as

Si−S0 f exp −biDisoð Þ
1− fð Þ ¼ S0 exp −big

T
i Dtissuegi

� �
ð2Þ

and solving for Dtissue using fixed f values. A weighted linear least squares
(WLLS) estimationwas carried out to estimate the diffusion tensor,Dtissue

(Koay et al., 2006), for each fixed value of f and Diso = 3 × 10−3 mm2/s
was set as a constant. The WLLS result was a diffusion tensor that best
fit themeasured data for a corresponding volume fraction. This procedure
was carried out for a range of f between 0 and 1.

Once a (f, Dtissue) pair was calculated, the WLLS objective function

FWLLS γð Þ ¼ 1
2

Xm
i¼1

ω2
i yi−

X7
j¼1

Wijγ j

� �2 ð3Þ

was used to judge which (f, Dtissue) best fit the measured data. Here i=
1,…,m, wherem= the number of images obtained, si = the measured
signal including noise,ωi= theweights for each si, and yi and γi are de-
fined differently for DTI and FWE as described below. Theweights were
set equal to the signal magnitude (ωi = si). This technique emphasizes
acquisitions with higher signal that result from lower b-value shells
and gradient directions aligned with lower diffusion distances. The dif-
fusion encoding matrix is
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Smaller objective function values indicate a better fit. Thus, by sys-
tematically fitting diffusion tensors to many volume fractions and
then evaluating which (f, Dtissue) minimizes the objective function, it is
possible to determine which isotropic volume fraction and tissue com-
partment tensor best represents the measured data.

To identify the optimum f would require many small steps in pre-
sumed f from zero to one, which would be cumbersome and time con-
suming. Howõever, the WLLS routine was further modified so that
multiple volume fractions could be fit simultaneously. Furthermore, it
was seen that the total number of fittings was greatly reduced by sys-
tematically refining the size of the Δf step.

This was implemented by simultaneously solving for the diffusion
tensor with multiple f-values. Initially, a coarse Δf step size of 0.1 was
used over the range from zero to one. The objective function for each
of these initial eleven ( f, Dtissue) pairs was evaluated with the lowest
value being passed on as the best estimate. The next iteration used
steps of 0.01 over the range of the previous best estimate ±.05. A
third step reduced the step size by another order of magnitude.

Themethod did not display any drop off in estimation accuracy com-
pared to the use of an initial step size of 0.001. However, the series of re-
fined steps reduced the number of WLLS estimations from 1001 to 31
per voxel.

We investigated the search space of f by comparing the value of the
objective function across the entire range of f values from f=0 to f=1
using an increment of 0.001. This was performed independently for
50 voxels from an in vivo data set with an SNR of 36. The voxels were
chosen to represent a wide range of different f values, as determined
by theWLLS procedure described above, aswell as widespread anatom-
ical locations within the brain. The objective function was manually
inspected for the position of the global minimum compared to local
minima.

The WLLS routines for DTI and FWE-DTI are similar, as both share
the same objective function with some modification. There are two
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