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The problem of “voodoo” correlations–exceptionally high observed correlations in selected regions of the brain–
is well recognized in neuroimaging. It arises when quantities of interest are estimated from the same data that
was used to select them as interesting. In statistical terminology, the problem of inference following selection
from the same data is that of selective inference. Motivated by the unwelcome side-effects of splitting the data–
the recommended remedy–we adapt the recent developments in selective inference in order to construct
confidence intervals (CIs) with good reproducibility prospects, even if selection and estimation are done with
the same data. These intervals control the expected proportion of non-covered correlations in the selected
voxels—the False Coverage Rate (FCR). They extend further toward zero than standard intervals, thus attenuating
the impressionmade by highly biased observed correlations. They do so adaptively, in that they coincidewith the
standard CIs when far away from the selection point.We complement existing analytic proofs with a simulation,
showing that the proposed intervals control the FCR in realistic social neuroscience problems. We also suggest a
“confidence calibration plot”, to allow the intervals to be reported in a clear and interpretable way. Applying the
proposed methodology on a loss-aversion study, we demonstrate that with the sample size and selection type
employed, selection bias is considerable. Finally, selective intervals are compared to the currently recommended
data-splitting approach. We discover that our approach has more power and typically more informative, as no
data is discarded.
Computation of the intervals is implemented in an accompanying software package.

© 2014 Published by Elsevier Inc.

Introduction

In the pursuit of brain regions that are highly correlated with
behavioral measures (neural correlates), past practice has been to
report correlations between the imagingmeasurements and behavioral
attributes only in selected regions. Thesemay have been selected based
on the same correlation thatwill be reported. This practice has attracted
condemnation for some time: Cureton (1950) refers to correlations
reported in this manner as “baloney”, with no hope of any meaningful
interpretation (cited by Vul et al., 2009b). These early warnings were
not echoed in the neuroimaging community until recently.

The implications of such uncontrolled selective estimation have been
raised more recently by two provocative papers: Vul et al. (2009a) and
Button et al. (2013). The problem raised by Vul et al. (2009a) is essen-
tially that reported correlations between imaging attributes and behav-
ioral attributes are “puzzlingly high”. Using meta-analysis augmented
with questionnaires, the researchers found thatmany published studies

were likely to have applied selective estimation: the correlations report-
ed are in locations selected based on these same correlations, thus justi-
fying the names circular inference and double-dipping. These papers
raised the awareness of the matter, not only through impressive
meta-analysis, but also by provocative rhetoric. Theywere so influential
that the original title of the former paper–“Voodoo Correlations”–has
become an unofficial term for selection bias.

Initially, themany comments onVul et al. (2009a), in the blogosphere
and in the scientific literature (Fiedler, 2011; Poldrack and Mumford,
2009; Lazar, 2009; Lindquist and Gelman, 2009; Nichols and Poline,
2009; Yarkoni, 2009; Lieberman et al., 2009), were not in agreement on
the source of the problem and the necessary course of action. Proposed
causes included multiplicity control, reporting standards, sample size,
sampling bias, and others.

To show the contribution of various different factors to this selection
bias, we perform a simulation study. Fig. 1 reports the average estimat-
ed correlation following the selection stage. It demonstrates that selec-
tion bias is present whenever non-independent selection occurs, and
that it can be quite considerable. Even large observed correlations, say
r = 0.8, can stem from non-existing ones merely due to selection bias.
Bias occurs in the presence or in the absence of a true effect, and will
be present even if flawless control of multiplicity is performed
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(Bonferroni in our example). In fact, the more conservative the multi-
plicity control, the higher the selection threshold, so that only extreme
correlations survive it. Finally, biaswill occur even in very large samples,
although it does decrease with sample size: the larger the sample size,
the smaller the standard errors of the estimated correlation, the lower
the selection threshold, and therefore the milder the selection bias.
For a rough intuition regarding the effect of different parameters on
the magnitude of the bias we refer the reader to Appendix A.

Imposing independence by splitting the data was the recommended
remedy in Vul et al. (2009a), and shared by almost all commentators
(Kriegeskorte et al., 2010; Fiedler, 2011; Poldrack and Mumford, 2009;
Lazar, 2009; Lindquist and Gelman, 2009; Nichols and Poline, 2009;
Yarkoni, 2009)While remedying bias, splitting the data introduces var-
iance effects,making it anunattractivemethodwhen dealingwith small
samples. This matter is elaborated in the Splitting the data section.

Another unbiased approach is that of selecting parameters using the
same data, but with a statistically independent criterion. This is implied
in Kriegeskorte et al. (2010), and several examples of candidate statis-
tics (albeit in a genetic setup) are suggested by Bourgon et al. (2010).
If voxel-wise bias can be sacrificed for the sake of global accuracy, spatial
priors in a Bayesian framework allow the spatial pooling of information
for improved accuracy.We briefly comment on this view in Appendix B.

Here, we choose a different path, and demonstrate that it is possible
to explicitly account for the selection stage at the estimation stage.
Ultimately, we will show that:

• The bias introduced by circular inference can be accounted for by
more than one way.

• It is typically preferable to account for the inherent bias in circular in-
ference, rather than splitting a small sample to avoid it.

Ourmethods rest on confidence intervals (CIs) that offer coverage of
population parameters, even after a biasing voxel/parameter selection.
The Methods section presents two methods of selective confidence in-
terval construction, which are directly relevant to voxel-based analysis.
Both methods are sketched in the Overview subsection, leaving

technical detail to following subsections, which can be skipped upon a
first read. In the Results section we demonstrate the application of our
intervals to the loss-aversion study by Tom et al. (2007). The
Discussion section deals with shortcomings and possible extensions of
the method: point estimates, cluster inference, choice of method, and
duality between selection and estimation. Finally, and no less impor-
tantly, we identify areas for future research effort, which will be re-
quired in order to make selective estimation a readily available tool in
researcher's arsenal. We believe this will be worthwhile because “voo-
doo correlations are everywhere—not only in neuroscience”, as the
title of Fiedler (2011) states. We could not agree more.

Methods

Overview

A (1 – α)% CI means that the population parameter will not be cov-
ered by the interval with a frequency of α%, over repeated experiments.
When generalizing this error criterion to many parameters such as
many voxel-wise correlations, or region-wise correlations, several can-
didate generalizations come tomind. Themost natural candidates being
control of the frequency of experiments where a parameter is not cov-
ered, and control of the expected proportion of non-covered
parameters.1

The error measure we seek not only deals with a multitude of pa-
rameters, but also deals with the effect of selecting a subset of these.
Fig. 2.1 depicts a case where 3 out of 20 candidate parameters were se-
lected by a hypothesis test.When constructing 90% confidence intervals
on all 20 parameters, 2 fail to cover, as expected. If focusing on the 3 pa-
rameters selected, 2 out of the 3 do not cover their underlying popula-
tion parameter. This coverage is clearly worse than the 1 out of 10
error implied by the confidence level.

1 The former leads to simultaneous coverage, and the latter is trivially satisfied by con-
trolling the classical confidence level.

Fig. 1. Themean correlation surviving a selection stage. Thefigure demonstrates that selection bias is presentwhenever a non-independent data-driven parameter selection has been per-
formed. The number of resolution elements (resels) varies from 5000 to 3 · 105 (across rows). The true underlying correlation varies from 0 to 1 (x axis), and is the same for all observa-
tions. The number of subjects underlying each observed correlation varies from 12 to 100 (across columns). Selection was performed so that the FWER is controlled at 0.05 using the
Bonferroni procedure. See Appendix C.1 for more details. Simulation standard errors are nowhere above 0.032. Also note that the most extreme observed values are unbiased. This fact
will be revisited when discussing the desired properties of our solutions.
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