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RAVENS

In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural
neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way,
hence potentially being part of underlying brain networks or otherwise influenced by underlying common mech-
anisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized
co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Indepen-
dent Component Analysis (ICA) and other related methods that tend to produce dispersed components of posi-
tive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based
representations of image data, we derive decompositions that partition the brain into regions that vary in consis-
tent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly in-
terpretable ways and generalize well to new data as shown via split-sample experiments. We empirically
validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural
Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse
parts-based representations of the data at various resolutions. These representations seem to follow what we
know about the underlying functional organization of the brain and also capture some pathological processes.
Moreover, we show that these low dimensional representations favorably compare to descriptions obtained

with more commonly used matrix factorization methods like PCA and ICA.

© 2014 Elsevier Inc. All rights reserved.

Introduction

The very high structural and functional complexity of the brain, cap-
tured at some macroscopic level by various structural and functional
imaging methods, has prompted the development of various analytical
tools aiming to extract representations of structure and function from
complex imaging data, which can help us better understand brain orga-
nization. Conventional methods based on pre-defined partitioning of
the brain into anatomical regions of interest, such as lobes, gyri, and
fiber tracts have been complemented in the past 15 years by data-
driven methods, which aim to tease out of the data anatomical and func-
tional entities that describe brain structure and function in an unbiased,
hypothesis-free way.

A widely-used family of methods that are free from regional hypothe-
ses falls under the umbrella of Voxel-Based Analysis (VBA) (Goldszal
et al,, 1998; Ashburner et al., 1998; Ashburner and Friston, 2000;
Ashburner, 2009; Thompson et al., 2000; Fox et al., 2001; Davatzikos
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et al, 2001; Shen and Davatzikos, 2003; Studholme et al., 2004;
Bernasconi et al.,, 2004). These voxel-wise methods often lack statistical
power because they repeat the same test at each voxel thus leading to
multiple comparison problems. Moreover, they do not fully exploit the
available data since they are myopic to the correlations between different
brain regions, which often reflect characteristics of underlying brain
networks.

Conversely, Multivariate Analysis (MVA) (Norman et al., 2006;
Ashburner and Kléppel, 2011; McIntosh and Misi¢, 2013) takes advan-
tage of dependencies among image elements and thus, enjoys increased
sensitivity. MVA methods can be separated into two sub-classes:
i) confirmatory MVA techniques, such as structural equation modeling
(McIntosh and Gonzalez-Lima, 1994) and dynamic causal modeling
(Friston et al,, 2003), that aim to assess the fitness of an explicitly formu-
lated model of interactions between brain regions; and ii) exploratory
techniques, such as Principal Component Analysis (PCA) (Friston et al.,
1993; Strother et al,, 1995; Hansen et al., 1999) and Independent Com-
ponent Analysis (ICA) (McKeown et al., 1998; Calhoun et al., 2001;
Beckmann and Smith, 2004) that aim to recover linear or non-linear re-
lationships across brain regions and characterize patterns of common
behavior. One may additionally aim to relate the extracted components
to demographic, cognitive and/or clinical variables by either employing
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techniques like Partial Least Squares (McIntosh et al., 1996; McIntosh
and Lobaugh, 2004; Krishnan et al., 2011) and Canonical Correlation
Analysis (Hotelling, 1936; Friman et al., 2001; Witten et al., 2009;
Avants et al., 2014), or by using the PCA and ICA components as features
in supervised discriminative settings towards identifying abnormal
brain regions (Duchesne et al.,, 2008) or patterns of brain activity
(Mourdo Miranda et al., 2005, 2007).

However, standard MVA methods suffer from limitations related to
the interpretability of their results. PCA and ICA, which are commonly
applied in neuroimaging studies, estimate components and expansion
coefficients that take both negative and positive values, thus modeling
the data through complex mutual cancelation between component re-
gions of opposite sign. The complex modeling of the data along with
the often global spatial support of the components, which tend to highly
overlap, result in representations that lack specificity. While it may be
possible to interpret opposite phenomena that are encoded by the
same component through the use of opposite signs, it is difficult to asso-
ciate a specific brain region to a specific effect. Finally, ICA, and particu-
larly PCA, aim to fit the training data well, resulting in components that
capture in detail the variability of the training set, but often do not gen-
eralize as well in unseen data sets.

Non-Negative Matrix Factorization (NNMF) (Paatero and Tapper,
1994; Lee and Seung, 2000) is an unsupervised MVA method that
enjoys increased interpretability and specificity compared to standard
MVA techniques. NNMF estimates a predefined number of components
along with associated expansion coefficients under the constraint that
the elements of the factorization take non-negative values. This non-
negativity constraint is the core difference between NNMF and standard
MVA methods and the reason for its advantageous properties. It has
been shown to lead to a parts-based representation of the data, where
parts are combined in additive way to form a whole. Because of this ad-
vantageous data representation, NNMF has been applied in facial recog-
nition (Zafeiriou et al., 2006), music transcription (Smaragdis and
Brown, 2003), document clustering (Xu et al., 2003), machine learning
(Hoyer, 2004; Cai et al., 2011), computer vision (Shashua and Hazan,
2005) and computational biology (Brunet et al., 2004; Devarajan, 2008).

However, the application of NNMF in medical imaging has been less
investigated. In the case of structural imaging, a supervised approach for
sparse non-negative decomposition was introduced by Batmanghelich
et al. (2009, 2012). This approach targets feature extraction in the con-
text of a generative-discriminative framework for high-dimensional
image classification. The derived overcomplete representation exploits
supervised knowledge to preserve discriminative signal in a clinically
interpretable way through the adoption of sparsity and non-negativity
constraints. The use of NNMF for feature extraction was also briefly sug-
gested by Ashburner and Kléppel (2011). Lastly, unsupervised matrix-
factorization approaches have been tailored for connectivity analysis
to take into account the nature of the data (Ghanbari et al., 2012);
(Eavani et al., 2013).

Contrary to previous approaches, we investigate in this paper the
use of Non-Negative Matrix Factorization in an unsupervised setting
as an analytical and interpretive tool in structural neuroimaging. The
goal is to use NNMF to derive a distributed representation that will
allow us to identify the brain regions that co-vary across individuals in
a consistent way, hence potentially being part of underlying brain
networks or otherwise influenced by underlying common mechanisms
such as genetics and pathologies. We argue that NNMF is well-adapted
for the analysis of neuroimaging data for four reasons: i) it provides a
parts-based representation that facilitates the interpretability of the re-
sults in the context of brain networks; ii) it naturally produces sparse
components that are localized and align well with anatomical struc-
tures; iii) it generalizes well to new data; and iv) it allows us to analyze
the data at different resolutions by varying the number of estimated
components. The second reason is of significant interest because in
many scenarios, one expects co-varying networks to be formed by bio-
logically related anatomical regions.

We apply the proposed approach to recover fractional anisotropy
change relationships in mouse brain development, and to recover gray
matter volume change relationships in human brain aging. Moreover,
we contribute a useful and comprehensive comparison with PCA and
ICA. We qualitatively and quantitatively evaluate the qualities of the re-
spective representations and we demonstrate the superiority of the use
of the proposed NNMF framework in detecting highly interpretable
components that contain strongly co-varying regions. The high specific-
ity of the obtained representation allows us to elucidate the distinct role
of anatomical structures. As a consequence, we advocate the use of
NNMEF as an alternative tool for the study of structural co-variance
(Seeley et al., 2009; Zielinski et al., 2010; Alexander-Bloch et al., 2013)
that is now typically performed in a hypothesis-driven way assisted
by Regions of Interest (ROI) or seed-based analysis.

Materials and methods
Methods

We consider a data set consisting of non-negative values that mea-
sure, through a medical image acquisition technique such as Magnetic
Resonance Imaging, the expression of local biological properties of
organ tissue for N samples. These samples typically represent different
subjects, but they can also represent the same subject at different time
points. For neuroimaging studies, the dimension D of the samples
(i.e., images) is typically in the hundred of thousands, while the number
of samples is typically in the hundreds. Thus, the data are represented
by a tall matrix X that is organized by arraying each data sample per col-
umn (X = [Xq, ..., Xy], X; € RP, and a data sample refers to a vectorized
image).

Our aim is to extract a relatively small set of components that cap-
ture multivariate relations between the variables and reflect the inher-
ent variability of the data. Moreover, we would like to extract these
components in a purely data-driven (unsupervised) fashion without
prior regional hypotheses.

Regularized matrix factorization is a broad framework encompassing
diverse techniques that factorize the data matrix X into two matrices sat-
isfying constraints related to modeling assumptions:

X~ CL (1)

where C denotes the matrix that contains a component in each column
(C = [ey, ..., €k, K is the number of the estimated components, ¢; € RP
and is assumed to be a unit vector ||cj[* = 1). L contains the loading coef-
ficients that, when used together with C, approximate the data matrix.
Both C and L are necessary towards a comprehensive understanding of
the data. C conveys information regarding the spatial properties of the
variability effect, while the entries of L specify the strength of the effect
in each data sample. Depending on the implemented modeling assump-
tions, C and L exhibit different properties. NNMF, PCA and ICA make
different assumptions regarding the components whose linear combina-
tion generates the data. In this section, we study the three methods in
terms of the assumptions they employ, giving particular emphasis on
the NNMF framework that is the main focus of this work.

Non-Negative Matrix Factorization

Non-Negative Matrix Factorization produces a factorization that
constrains the elements of both the components and the expansion co-
efficients to be non-negative. This factorization is typically achieved by
solving the following energy minimization problem:

. 2
min  |X—CL|;

i @)
subject toC>0,L>0

where || - |[? is the squared Frobenius norm (||X||? = trace(X"X)). In
other words, the optimal non-negative matrices are the ones that best
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