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Signal drift in functional magnetic resonance imaging (fMRI) is an unavoidable artifact that limits classification
performance in multi-voxel pattern analysis of fMRI. As conventional methods to reduce signal drift, global
demeaning or proportional scaling disregards regional variations of drift, whereas voxel-wise univariate
detrending is too sensitive to noisy fluctuations. To overcome these drawbacks, we propose a multivariate
real-time detrending method for multiclass classification that involves spatial demeaning at each scan and
the recursive detrending of drifts in the classifier outputs driven by a multiclass linear support vector machine.
Experiments using binary and multiclass data showed that the linear trend estimation of the classifier output
drift for each class (a weighted sum of drifts in the class-specific voxels) was more robust against voxel-wise arti-
facts that lead to inconsistent spatial patterns and the effect of online processing than voxel-wise detrending. The
classification performance of the proposed method was significantly better, especially for multiclass data, than
that of voxel-wise linear detrending, global demeaning, and classifier output detrending without demeaning.
We concluded that the multivariate approach using classifier output detrending of fMRI signals with spatial
demeaning preserves spatial patterns, is less sensitive than conventional methods to sample size, and increases
classification performance, which is a useful feature for real-time fMRI classification.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Multi-voxel pattern analysis (MVPA) of functional magnetic reso-
nance imaging (fMRI) signals is a popular method for analyzing brain ac-
tivity using (neural activity-induced) blood-oxygen-level-dependent
(BOLD) signal patterns (Norman et al., 2006). MVPA has been used to
classify various patterns of visual objects (Haxby et al., 2001, Haynes
and Rees, 2006, Diana et al., 2008), word semantics (Mitchell et al.,
2008), subjective experience of sound (Meyer et al., 2010), episodicmem-
ory (Chadwick et al., 2010), mental imagery (motor, mood, and object)
(LaConte et al., 2007, Reddy et al., 2010), and emotions (happiness,
disgust, and sadness) (Sitaram et al., 2011).

In its application to fMRI, the classification performance of MVPA
depends on several factors in the preprocessing step, such as spatial
smoothing (Misaki et al., 2013), temporal compression, data partitioning,
resampling (Strother et al., 2002), realignment (LaConte et al., 2003),

and detrending signal drift (Etzel et al., 2011). The latter in particular
is necessary to enhance classification accuracy, especially for long-
time fMRI acquisition.

Signal drift in fMRI can be attributed to the temporal variation in
scanner magnetic fields (Smith et al., 1999) or physiological factors
(Biswal et al., 1996, Kiviniemi et al., 2000). Considering that these
factors affect signals in the entire brain, a simple approach has been to
remove spatially global effects of drift by regressing out, or proportion-
ally scaling out, spatial mean signals from fMRI signals (Macey et al.,
2004). However, this approach does not account for local variability of
fMRI drifts. Themost common solution these days is to linearly detrend
signal drifts in each voxel, and is called voxel-wise linear detrending
(Tanabe et al., 2002, Hassabis et al., 2009, Pereira et al., 2009, Chadwick
et al., 2010, Reddy et al., 2010, Sitaram et al., 2011, Etzel et al., 2011,
Andersson et al., 2013, Bonnici et al., 2013). However, voxel-wise linear
detrending of fMRI drift is limited in MVPA, since linear trend estimation
is vulnerable to noise, can alter spatial patterns (Misaki et al., 2010, Etzel
et al., 2011), and may affect classification performance (LaConte et al.,
2005).

Voxel-wise detrending leads to a more critical problem in real-time
fMRI (Sitaram et al., 2011, Andersson et al., 2012). In real-time fMRI,
the drift should be estimated from online sample data, i.e., a mixture
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of drifts and signals. Online estimation of drift using incomplete data
may result in unstable spatial patterns in recursive voxel-wise
detrending algorithms (Andersson et al., 2012, Andersson et al.,
2013).

In this study, we investigate whether class-specific multi-voxel
(multivariate) detrending can mitigate the problems in the two
extreme methods mentioned above, i.e., (spatially) global signal removal
methods and voxel-wise detrending methods. The former ignores
regional variations in signal drifts; whereas the latter is too sensitive
to voxel-wise artifacts without considering the similarity of drift effects
in the neighborhood of each voxel.

An example of the multivariate detrending approach is a binary
classifier output detrending method proposed by LaConte et al. (2007)
based on a support vector machine (SVM) (Boser et al., 1992, Cortes
and Vapnik, 1995), a supervised machine learning method for MVPA.
As the average of SVM classifier outputs should be centered at zero,
classifier output drifts (caused by signal drifts) can be regressed out by
a recursive least-square fit of a straight line for the outputs (LaConte
et al., 2007). Since the classifier output is a weighted sum of signals at
multiple voxels for each class, detrending classifier outputs takes advan-
tage of robustness against pattern distortions caused by inconsistent
voxel-wise detrending.

A growing number of recent fMRI-based MVPA studies have ad-
dressed multiclass problems. To deal with multiclass problems using
SVM, two different strategies have been used to combinemultiple binary
classifiers or to put all data together (“all-together”) in the design of a
SVM classifier. Examples of the multiple binary classifiers approach are
one-versus-all, one-versus-one, directed acyclic graph SVM (Platt et al.,
2000), and error-correcting code (Dietterich and Bakiri, 1995). Several
“all-together” SVM algorithms are also available (Bredensteiner and
Bennett, 1999, Mayoraz and Alpaydin, 1999, Weston and Watkins,
1999, Crammer and Singer, 2002, Lee et al., 2004); however, these
require generally higher computational costs thanmultiple binary classi-
fiers. Thus, for general multiclass SVM applications, the one-versus-all
and one-versus-one approaches are common choices due to their
simplicity. In the one-versus-all approach, each binary classifier
deals with data divided into a class and the rest classes. The classifier
with highest output (among all the classifiers) determines the class
label of the data (a winner-take-all strategy). In the one-versus-one
approach, each binary classifier is specialized to classify pairs of all
class labels. The final class label is chosen by counting votes from all
the classifiers (a max-wins voting strategy). So far, various approaches
have been applied to multiclass fMRI classification: for example, the
one-versus-all approach (Reddy et al., 2010), the one-versus-one
approach for four classes (Andersson et al., 2012), and the error-
correcting code method for four-way position classification (Hassabis
et al., 2009).

However, no multivariate detrending method has been intro-
duced to improvemulticlass classification of fMRI data. Furthermore,
the effectiveness of the multivariate detrending method for multiclass
fMRI data remains to be assessed, especially for the purpose of real-
time application.

In this paper, we propose a multivariate real-time detrendingmeth-
od to reduce the temporal inconsistency of the spatial patterns that
occur in a voxel-wise fMRI detrending method. The proposed method
includes a spatial demeaning at each scan and a temporal detrending
of drifts in the multiclass classifier outputs (in this study, the outputs
of linear SVMs). Using a binary classification of motor movements and
a multiclass classification study of four motor imageries (i.e., walking
forward, turning left, turning right, and catching a cup), we show that
classification performance can be significantly improved by detrending
classifier outputs (thus removing class-specific multivariate drifts),
especially in multiclass MVPA. We also show that spatial demeaning is
an important step to optimally train classifiers, through a greater
emphasis on the spatial pattern itself rather than the signal offset, and
to thus improve classification performance.

Material and methods

Generalized classifier output linear detrending

The generalized multiclass classifier output linear detrending algo-
rithm (GCLD) that we propose in this study combines the spatial
demeaning and linear detrending of classifiers outputs through the
following steps. Here, we explain the general concept and procedure of
GCLD; more details will follow in the Evaluation section.

STEP 1: spatial demeaning (DM) of a training data set
For a set of raw scanned data {St}t = 1,…,T, we derive a voxel intensity

vector st ¼ st1; st2;…; stRf g corresponding to intensities St(v) at scan
time t at voxels v= {vi|vi ∈ ROI} within a target brain region of interest
(ROI) (R voxels within the ROI). To focus on the overall procedure of
GCLD, details of ROI selection will be explained later.

To remove global drifts commonly affecting voxels within the target
ROI at each scan, we subtract a mean intensity of voxels within the ROI
(μt) from the voxel intensity vector st.

x0
t ¼ st−μ t ¼ ste−μ t

n o
e¼1;…;R

; μ t ¼
1
R

XR
e¼1

ste ð1Þ

STEP 2: feature selection and training multiclass SVMs

Feature selection. From the demeaned voxel intensity vector set
{x ' t}t = 1,…, I extracted from a training data set (with a set size of I),
we selected a feature vector xt (a subset of x′t) that was composed of
statistically meaningful voxels, using a searchlight strategy. Feature se-
lection will be explained in detail in the Evaluation section.

A binary SVM and the binary classifier output detrendingmethod.Weuse a
binary linear SVM(Boser et al., 1992, Cortes andVapnik, 1995) as a basic
classifier that produces a linear discriminant function fwith the largest
possiblemargin for a given feature data set {x} (with a vector dimension
D), defined below:

f xð Þ ¼ wx þ b ð2Þ

where w = (w1, …, wD) is the normal weight vector of the separating
hyperplane, and b is the bias that translates the hyperplane away from
the origin of the feature space. For a training set (xi, yi) for i = 1, …, I,
y ∈ {1, ‐ 1}I, the SVM searches for optimal values of w and b to find a

hyperplane that maximizes the margin magnitude wk k
2 as follows:

w�
; b�; ξ

� � ¼ min
w;b;ξ

1
2
wTw þ C

XI
i¼1

ξi; subject to yi wTxi þ b
� �

≥1−ξi; ξi ≥ 0:

ð3Þ

C is a regularizationparameter that controls costs between themargin
maximization and the classification error minimization on the training
data and should be optimized before training SVM. Details of the optimi-
zation process of C will be dealt with in the Evaluation section. For a
testing set {xi}i = 1,…, J, the classifier output is f(xi) = w*xi + b*, and
the class label for an input feature vector xi is assigned according to
the sign of f(xi), i.e., greater than or less than zero.

The binary classifier detrending method proposed by LaConte et al.
(2007) was to remove drifts in the classifier output f(xi) at scanning
time ti to make the average classifier outputs to zero by recursive
detrending. That method can be written as the following equation:

g xið Þ ¼ f xið Þ−αti−β ¼ w�xi þ b�−αti−β ð4Þ

For a feature vector xi at time ti, the slope (α) and intercept (β) was
recursively estimated usinghistory samples of { f(xj)} for tj⩽ ti. A feature
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