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Detecting local differences between groups of connectomes is a great challenge in neuroimaging, because the
large number of tests that have to be performed and the impact onmultiplicity correction. Any available informa-
tion should be exploited to increase the power of detecting true between-group effects. We present an adaptive
strategy that exploits the data structure and the prior information concerning positive dependence between
nodes and connections, without relying on strong assumptions. As a first step, we decompose the brain network,
i.e., the connectome, into subnetworks and we apply a screening at the subnetwork level. The subnetworks are
defined either according to prior knowledge or by applying a data driven algorithm. Given the results of the
screening step, a filtering is performed to seek real differences at the node/connection level. The proposed strategy
could be used to strongly control either the family-wise error rate or the false discovery rate.We show bymeans of
different simulations the benefit of the proposed strategy, and we present a real application of comparing
connectomes of preschool children and adolescents.

© 2014 Elsevier Inc. All rights reserved.

Introduction

The study of brain connectivity has become an important aspect of
neuroscience as it can help to understand brain organization and function
(Fornito et al., 2013; Sporns, 2011). Moreover, the metrics of brain con-
nectivity, assessed through neuroimaging methods, have been recog-
nized as an important marker indicating the level of brain maturation
or psychopathology. Through recent innovations in medical imaging
and image analysis, the determination of interregional brain connectivity
became feasible. Different types of connectivity can be obtained de-
pending on the imaging modality and measure of connectivity,
e.g., structural connectivity from diffusion-weighted MRI and fiber
tracking (Cammounet al., 2012;Hagmann et al., 2008), or functional con-
nectivity from functional MRI and statistical dependence on time (Smith
et al., 2013; Friston, 2011; van den Heuvel and Hulsoff-Pol, 2010; Achard
et al., 2006).

Global brain connectivity can bemodeled by a network (a weighted
graph) called connectome (Sporns et al., 2005), where theN nodes stand
for brain regions of interest (ROIs), and each edge weight characterizes
a measure of connectivity between pairs of ROIs.

Investigating differences in connectivity between distinct populations
based on connectivitymatrices is attractive, but also comeswith a certain
number of problems (Fornito et al., 2013; Varoquaux and Craddock,
2013), among them, the high number of multiple comparisons.

Effectively,when the comparisonbetweenbrainnetworks are studied
at the level of nodes (vertices) (O(N)) that represent brain ROIs, or con-
nections (edges) (O(N2)) that link brain ROIs, a huge number of tests
have to be performed on the same data, especially, in the case of testing
at the level of connections, in which the number of tests basically grows
quadratically with the number of nodes. If the multiplicity of tests is ig-
nored, the risk of committing false discoveries increases. As a conse-
quence, erroneous conclusions are frequently drawn (Meskaldji et al.,
2013a). On the other hand, considering multiplicity could dramatically
decrease the chance of detecting real between-group effects. This is a
fact that is commonly reported by researchers especially when the con-
ventional Bonferroni procedure is used for the multiplicity correction
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and the strong control on the number of false discoveries is exerted. For
example, if N = 100 nodes, the Bonferroni threshold for significant p-
values is of order 10−4 when testing at the level of nodes and 10−6

when testing at the level of connections.
Depending on the field of application and the nature of the data,

many strategies have been adopted in order to face the multiplicity
challenge in the presence of positively correlated test statistics. These
strategies consist in exploiting the data structure and positive depen-
dence that could be present between tests. This can have an important
impact on the power of detecting true alternatives. For example,
this concept was adopted in the widely recognized software package
for analyzing fMRI data, the Statistical Parametric Mapping (SPM)
(Friston et al., 1995; Frackowiak et al., 1997) and in its extensions such
as wavelet extensions (Van De Ville et al., 2004, 2007), based on the
idea that voxels of a neurological type belonging to a unique anatomical
region will usually exhibit positively correlated behavior (Penny and
Friston, 2003; Genovese et al., 1999). In this case, the data is supposed
to be smooth and follow a multi-dimensional Gaussian distribution. For
this reason, a smoothing has to be applied to the data (Nichols and
Hayasaka, 2003). A permutation approach is performed to define active
clusters.

The same concept has been followed to derive specific statistical
methods in the brain connectivity context. Zalesky et al. (2010) proposed
the network based statistic (NBS) as a method to correct for the FWER
(the probability of having at least one false positive connection), in the
framework of multiple testing applied to the brain network connections.
The method relies on a first identification of connected components (in
the graph theoretical sense), by thresholding the set of p-values at an
arbitrary threshold. An iterative procedure based on permutation testing
allows thereafter identifying connected components that carry a
between-group effect. These methods have, however, some limitations.
First, the inference is obtained at the level of connected components
and only exerts a weak FWER control, that is, once a component is
declared to be significantly different, nothing could be said at the level
of individual nodes or connections belonging to the component. In
other words, the type I error metric controlled at the level of nodes/
connections is unknown. Second, the results strongly depend on the
arbitrary choice of the threshold. The same can be said about the spatial
pairwise clustering (SPC), proposed by the same authors, where the
definition of components is based on geometrical distance in addition
to the connectedness in the graph theoretical sense (Zalesky et al.,
2012).

It is commonly admitted that most mental diseases or cognitive trait
exhibit changes not in the entire brain uniformly, but rather specific in
functional systems or brain regions and this to a different extent.
Meskaldji et al. (2011a) proposed an adaptive strategy that exploits
the network structure of the brain connectivity by considering brain
subnetworks, which results in reducing the number of tests and a
considerable improvement in power. The strategywas applied to detect
differences in both structural and functional brain connectivities (Owen
et al., 2013a, 2013b; Meskaldji et al., 2011a). However, besides the gen-
erality of this strategy in terms of summary statistics that could be used,
and in terms of the diversity of the brain decomposition methods that
could be applied, it suffers from the same drawback as the NBS and
the SPC, that is, nothing could be said concerning the statistical evidence
of nodes and connections that constitute the significant subnetworks.
Nevertheless, the subnetworks could be chosen as small as possible to
obtain statistical evidence at finer scales. We will give throughout this
paper some highlights on the differences between these weak control
methods.

The question that wewill investigate in this paper is to go beyond the
cluster/subnetwork level and investigate the differences at the single
node/connection level. Inspired by Benjamini and Heller (2007), we pro-
pose a screening–filtering strategy that exploits the data structure and
positive dependence that could exist between connections/nodes. The
advantage of the proposed strategy is that it exerts a strong control of

type I error rates under weak assumptions (i.e., weaker than as-
sumptions needed by SPM, NBS and SPC). We study the performance
of the screening–filtering approach on simulated networks and on
structural brain connectivity matrices. In particular, we examine
the influence of the network decomposition and the screening
threshold on the statistical inference. We also discuss the conceptual
differences between our proposed strategy and some of existing
methods in the literature.

As far as we know, this method is the first adaptive strategy that
guarantees the strong control of type I error rate at the level of nodes
or connections. For this reason, the performances of the proposed strat-
egywill only be compared to the standard node/connection-wise infer-
ence, that is, methods that exert a strong control, but do not consider
neither data structure nor positive dependence between tests.

The paper is organized as follows. We first give the general pro-
cessing pipeline and the mathematical formulation of the screen-
ing–filtering approach. Then, we show by simulations, the benefit
of using the proposed strategy. Finally, we present a practical appli-
cation on real data, from children and adolescents, which consists in
comparing structural human brain connectomes between these
populations.

Methods

We present in this section the different steps of local procedures
that exert a strong false positives control. In particular, we outline
two strategies: the standard methods and the screening and filtering
methods.

Local network-based measures

Since the imagingmeasures of connectivity can be used tomodel the
brain as a network, it is worth to locally compare populations not only
cell by cell of the connectivity matrices, but also by estimating the
network measures that characterize the topological properties of the
brain network (Fornito et al., 2013; Meskaldji et al., 2013a; Bassett
et al., 2008). The combination of the local and the global inferences
gives a better understanding of the network organization (Meskaldji
et al., 2013a). In this paper, we focus on the local measures. Sporns
(2011); Rubinov and Sporns (2010) among others are good sources
for a comprehensive list of important measures with their interpreta-
tions in the brain connectivity context.

For non-homogeneous populations, it is strongly recommended to
correct for covariables such as the age or the gender of the subjects, by
taking the residuals of a regression as the new observations (Meskaldji
et al., 2013a).

This step ends up with a vector of local observations for each node/
connection and for each subject.

Testing and p-value computation

Let us assume that the aim of a brain connectivity study is to com-
pare different groups of connectomes. Comparing two populations at
the level of nodes or connections or any local unit that we call atom,
usually consists in performing a (univariate or multivariate) two-
sample test for each node/connection (Meskaldji and Van De Ville,
2014). When more than two groups are compared, an analysis of vari-
ance (ANOVA) is performed with a predefined contrast. This ends up
with M p-values, where M is of the order (O(N)) when testing at the
level of nodes, and M goes like (O(N2)) when testing at the level of
connections.

Let pj denotes the p-value of atom j=1,…,M. The standardmethod
(SM) consists in performing amultiple testing procedure to the set of
p-values to control a type I error metric. For example, one could
apply the Bonferroni procedure to the p-values {p1,…, pM} by declaring
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