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14 Wepresent a newmethod, State-based dynamic community structure, that detects time-dependent community
15structure in networks of brain regions. Most analyses of functional connectivity assume that network behavior is
16static in time, or differs between task conditionswith known timing. Our goal is to determinewhether brain net-
17work topology remains stationary over time, or if changes in network organization occur at unknown time
18points. Changes in network organization may be related to shifts in neurological state, such as those associated
19with learning, drug uptake or experimental conditions. Using a hiddenMarkov stochastic blockmodel, we define
20a time-dependent community structure. We apply this approach to data from a functional magnetic resonance
21imaging experiment examining how contextual factors influence drug-induced analgesia. Results reveal that net-
22works involved in pain, working memory, and emotion show distinct profiles of time-varying connectivity.
23© 2014 Elsevier Inc. All rights reserved.
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28 Introduction

29 The explosion of several new topics in neuroimaging, including
30 large-scale resting state studies (Van Dijk et al., 2012; Zuo et al., 2012;
31 Smith et al., 2013), studies of psychopathology (Jafri et al., 2008;
32 Greicius, 2008), and pharmacological functional magnetic resonance
33 imaging (phfMRI) (Schwarz et al., 2007; Honey and Bullmore, 2004)
34 has led to exciting innovations in methods for functional connectivity.
35 Two emerging themes are the need for dynamic connectivity methods
36 that allow for changes in connectivity over time, and network models
37 that capture the complex structure of connectivity. In this paper we in-
38 troduce a new method, State-based dynamic community structure
39 (SDCS), that combines these approaches to identify distinct functional
40 connectivity states with respect to the organization of networks of
41 brain regions into communities of brain regions. This method is partic-
42 ularly well-suited for experimental contexts in which the timing of
43 shifts between states cannot necessarily be specified a priori.
44 A growing body of work (Beckmann et al., 2005; De Luca et al., 2006;
45 Damoiseaux et al., 2006; Ferrarini et al., 2009; Fair et al., 2009) has sug-
46 gested that brain functional connectivity networks exhibit complex
47 structure such that the whole-brain network can be represented as a
48 collection of subnetworks, where each subnetwork is comprised of a
49 set of spatially distributed brain regions. Recent work (Q3 Bassett et al.,
50 2011a, 2011b;Q4 Bowman et al., 2012; Schwatz et al., 2009; Shen et al.,

512010), (Meunier et al., 2009) has shown that these subnetworks can
52be illustrated as “communities” or modules of “nodes”. Nodes within a
53community are highly connected and/or share some propertieswith re-
54spect to connectivity. Methods that estimate this network structure by
55partitioning a collection of brain regions into subgroups can provide
56complementary information to descriptivemeasures of the global prop-
57erties of the functional connectivity network (Bullmore and Sporns,
582009) such as degree distributions (number of connections per node),
59clustering coefficients, and small world properties (Bullmore and
60Sporns, 2009; Rubinov and Sporns, 2010; Sporns et al., 2004; Simpson
61et al., 2013).
62Several recent developments in fMRI analysis methods are motivat-
63ed by the recognition that functional connectivity characteristics are dy-
64namic, fluctuating over time with changes in mental states and other
65physiological processes (Hutchison et al., 2013). Recent work has incor-
66porated temporal dynamics into the varied descriptions of functional
67connectivity properties, providing a flexible alternative to standard
68approaches that assume network behavior is static over time, or differs
69between task conditions with known timing. Changes in network char-
70acteristics include shifts in the strength of connection between a given
71pair or group of nodes, the degree distribution or clustering coefficient
72of the network as a whole, or other global network properties. Dynamic
73connectivity regression (Cribben et al., 2012) provides a method for de-
74tecting change points in an fMRI time series based on the connectivity
75graph of a group of selected regions. Dynamics of spatial activation com-
76ponents have been estimated using dynamic ICA (Allen et al., 2012) and
77dynamic principal components analysis (Leonardi et al., 2013). The
78characteristics of the functional connectivity network have been
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79 shown to differ according to various task demands (Hutchison et al.,
80 2013), and psychoactive drug conditions (Greicius, 2008; Boveroux
81 et al., 2010). Of particular relevance to this paper, the dynamics of the
82 modular structure of the functional connectivity network have been ex-
83 plored in resting state (Jones et al., 2012), learning (Q5 Bassett et al., 2011a,
84 2011b), and studies of emotion (Kinnison et al., 2012).
85 Recent developments in techniques for dynamic networks in neuro-
86 imaging data have occurred alongside new approaches to general
87 dynamic network analysis problems, and in particular, work on dynam-
88 ic community structure. Popular approaches include extensions of
89 network partitioning algorithms based on modularity maximization or
90 related “quality functions” to time-dependent networks, often by incor-
91 porating temporal smoothness into the quality function (Mucha et al.,
92 2010; Kawadia and Sreenivasan, 2012; Chakrabarti et al., 2006; Chen
93 et al., 2013). Other algorithms are based on incremental updates to esti-
94 mates of community structure (Cazabet et al., 2010; Nguyen et al.,
95 2011). Applications of Dynamic network models to fMRI data must ad-
96 dress its particular characteristics, specifically low signal to noise ratio,
97 relative lack of temporal resolution, and the related lack of observable
98 instantaneous, or at least temporally identified, connections (cf EEG or
99 email data). Aswill be discussed,we pursue an approach based on a sto-
100 chastic generative model for network data, rather than an algorithmic
101 method, and focus on identifying district states with respect to commu-
102 nity structure.
103 In this paper, we introduce a dynamic network analysis technique,
104 State-based dynamic community structure (SDCS),that identifies dis-
105 tinct temporal states with respect to community structure over time
106 without a priori assumptions on the timing or type of changes in struc-
107 ture. Previous approaches to dynamic connectivity have largely used
108 simplemeasures of connectivity, or have been confined to a small num-
109 ber of predefined regions and do not scale up easily to larger networks.
110 As discussed in Hutchison et al. (2013), the sliding window approaches
111 employed in many dynamic connectivity studies are difficult to inter-
112 pret and induce spurious fluctuations under stable connectivity condi-
113 tions. By contrast, the SCDS approach is able to capture complex
114 changes, estimating the temporal and graphical structure of the net-
115 work in an integrated manner. We characterize the organization of
116 the network using the stochastic block model (Nowicki and Snijders,
117 2001), a statistical model for describing community structure. The
118 goal of this approach is to estimate whether and how this network
119 structure shifts over time in experiments with possible state-related
120 changes in psychological activity. A change in the organization of the
121 connectivity network could consist of, for example, a shift from a state
122 inwhich connectivity is highlymodular, i.e. connectivity is concentrated
123 within subnetworks of regions, to a state in which the pattern of con-
124 nectivity is less modular and more integrated throughout the network.
125 SDCS identifies state-based changes using aHiddenMarkovmodel, a
126 widely usedmethod for identifying latent properties of time series data.
127 Under this framework, we assume that there is an underlying, unob-
128 served state property associated with the network at each point in
129 time, and these states may shift at unknown times. The HiddenMarkov
130 model allows us to estimate the properties of the underlying states, and
131 identify where likely shifts between states have occurred. Thus, we can
132 assesswhether the functional connectivity network is stationary in time
133 with respect to structural organization, or whether there are shifts in
134 structure, and identify the distinct structural patterns of the functional
135 connectivity network. State-space models have been used previously
136 in related fMRI problems, including studies of changes in effective con-
137 nectivity for EEG/MEG data under a Dynamic Causal Model (Olier et al.,
138 2013), and inmultivariate state-spacemodels for brain function (Janoos
139 et al., 2013).
140 We apply the SDCS functional connectivity method to fMRI data ac-
141 quired during a study of opioid- and expectancy-based painmodulation
142 (Atlas et al., 2012). Our previous paper used voxel-wise event-related
143 analyses to test whether opioid drug effects on pain-evoked responses
144 differ as a function of belief (i.e. during Open, relative to Hidden,

145administration). In the present analysis, we use SDCS to examine the
146timecourse of connectivitywithin regions associatedwith psychological
147processes thought to underlie placebo effects andpainmodulation: pain
148processing, emotion, and executive function/ working memory (Atlas
149and Wager, 2013). We build on our previous work by testing whether
150different networks have different timecourses of connectivity during
151Open Drug administration, irrespective of task design. Because our
152task involved changes on the order of minutes (due to the pharmacoki-
153netics of the opioid analgesic) as well as shifts in context (baseline, in-
154structions signaling onset and offset of drug infusion, post-infusion
155washout period), the present analysis can determine whether distinct
156functional networks and their within-network organization are differ-
157entially influenced by these factors.

158Methods

159The method for estimating time-dependent functional network
160structure consists of three stages. First, the total time interval is divided
161into a series of non-overlappingwindows and the functional connectiv-
162ity network is estimated independently in eachwindow, as described in
163the section Network representation Q6. Next, a hidden Markov model is fit
164to the sequence of estimated networks to identify possible distinct Q7

165connectivity states and the most likely locations in time of meaningful
166shifts in community structure. The procedure for identifying connectiv-
167ity states and the change points between them is described in the
168section Changes over time Q8. Finally, the estimates of functional connec-
169tivity structure for each of the identified states are refined using
170MCMC. A schematic is shown in Fig. 1.

171Network representation

172Before estimating dynamic community structure, the brain regions
173comprising the network and the measure of connectivity must be
174defined, as well as the time windows on which the SDCS algorithm
175will operate. In this paper, we focused on connectivity within parcels
176of multi-voxel regions defined based on a priori functional and anatom-
177ical boundaries, examined 150-second windows (75 TRs), and used
178thresholded coherence as a measure of connectivity. We discuss each
179of these decisions and associatedmethods inmore detail below. Though
180the application of ourmethod involvesmaking choices about how tode-
181fine regions and the length of timewindows to integrate over, the SDCS
182method is general and does not depend on particular choices of region
183definition and time windowing. Different choices will likely be optimal
184for different applications.
185In networkmodeling of fMRI data, we have a choice in the definition
186of the nodes and edges. Voxels themselves can be used as nodes, as in
187ICA or seed region analysis, or voxels can be segmented into spatially
188contiguous groups, which are then treated as nodes in the functional
189connectivity network. While a single voxel approach has the advantage
190of introducing fewer assumptions on the network, a higher-level repre-
191sentation of connectivity can provide complementary information
192about patterns of connectivity which can't be attributed to spatial adja-
193cency. In this work, we were primarily interested in brain networks in-
194volved in pain processing, working memory, or emotion, as each of
195these processes has been implicated in expectancy-based pain modula-
196tion (Atlas andWager, 2013).We therefore usedmeta analyses to iden-
197tify brain regions consistently activated by working memory (Wager
198and Smith, 2003) and emotion (Kober et al., 2008) as well as a mega-
199analysis of five previous studies of thermal pain to identify regions
200involved in pain processing (Atlas et al., 2010). We note that meta-
201analysis and mega-analysis provide ways to pool across previous stud-
202ies to identify regions that aremost likely to be activated by a given pro-
203cess. Thus they provide a principledway to identify functional networks
204a priori irrespective of specific experimental details such as fMRI field
205strength, study population, study location, etc. Details of these methods
206have been described in detail in previous work (Wager et al., 2007;
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