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Complex systems are described according to two central dimensions: (a) the randomness of their output,
quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators.
Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity
science is that signals with very high or very low entropy are generated by relatively non-complex systems, while
complex systems typically generate outputs with entropy peaking between these two extremes. In understanding
their environment, individualswould benefit from coding for both input entropy and complexity; entropy indexes
uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract
representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a
template for generalization and rapid comparisons between environments. Using functional neuroimaging, we
demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the
human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain
regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity
between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity.
These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively
models their environmental generators.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Theoretical and experimental work in the fields of psychology and
complexity science has arrived at two separate approaches for describ-
ing how stimuli may be encoded and what constitutes a complex
stimulus (see Shiner et al., 1999). The first aims at explaining to what
extent a specific stimulus can be considered “simple” from the perspec-
tive of amachinewhose goal is to veridically encode and reproduce that
stimulus (e.g., Chater and Vitanyi, 2003). For example, the stimulus
ABCDABCD is quite simple because it can be represented as “repeats
ABCD twice,” whereas ACDDBADC is substantially more complex
because it requires more memory to encode. Within this framework,
simple stimuli are therefore those that contain noticeable patterns;
they permit compressed representation, are easy to manipulate and
provide a basis for predicting future states. Importantly, from this
perspective, “complexity” scales monotonically with stimulus disorder

(entropy), as more disordered inputs are less compressible—that is, in-
creasingly random stimuli require more memory in order to be
veridically reproduced.

On the other hand, the second, more recent view (e.g., Crutchfield,
2012) holds that simplicity/complexity depends on how demanding it
is to model the underlying system that generated a particular stimulus
or signal via the interactions of its states. From this perspective, there
is a convex, inverse U-shaped relation between disorder and complexi-
ty. This is because highly ordered and highly disordered signals are
typically generated by succinct, easily describable systems, whereas
more sophisticated, or complex, systems generally convey intermediate
levels of entropy.1 Note that in this latter approach, complexity does not
capture howdifficult it is to veridically encode or reproduce any specific
stimulus or signal, but rather how computationally demanding it is to
model the systemor source generating that signal. As can be appreciated,
the two views described above are independent, and graphs depicting

NeuroImage 108 (2015) 292–300

☆ This workwas supported by the European Research Council under the 7th framework
starting grant program (European Research Council Starting Grant no. 263318 to U.H.).
⁎ Corresponding author at: Department of Psychological and Brain Sciences, Dartmouth

College, Hanover, NH 03755, USA.
E-mail address: sam.nastase@gmail.com (S.A. Nastase).

1 For instance, ABCDABCD can be thought of as generated by a system (e.g., a transition
matrix) that transitions between four states deterministically (a simple explanation),
while a random stimulus can be characterized by a system where all state transitions
are equally likely (a similarly simple explanation).
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monotonic vs. convex complexity–entropy relations are the subject of
ongoing theoretical discussion (e.g., Feldman et al., 2008).

There has been substantial theoretical and behavioral support, as
well as some validation from neuroimaging studies, for the importance
of entropy in sensory and cognitive processing, as detailed below.
However, there is as yet little evidence that the human brain codes for
environmental inputs in a way consistent with the second view arguing
for a convex relation. The current study wasmotivated by the hypothe-
sis that, from a cognitive perspective, these two properties are comple-
mentary. In the following, we argue that the human brain tracks both
disorder (the degrees of freedom in sensory data) and complexity
(quantified, e.g., by the degrees of freedomorminimummessage length
specifying a model of those data; Spiegelhalter et al., 2002; Wallace,
2005). This sort of dual encoding model suggests that neural sensitivity
to uncertainty may vary both linearly and convexly in response to
stimuli of increasing entropy. We then present a functional MRI study
addressing this hypothesis.

Sensitivity to entropy is crucial for compression (Barlow, 1961; Borst
and Theunissen, 1999; Brady et al., 2009; Buiatti et al., 2009; Olshausen
and Field, 1996), prediction (Kiebel et al., 2008) and guiding adaptive
behavior (Ashby, 1947; Friston, 2010). Prior neuroimaging studies
have documented neural systems whose activity monotonically tracks
the degree of uncertainty in sensory inputs, particularly in lateral
temporal cortex (Bischoff-Grethe et al., 2000; Tobia et al., 2012), the an-
terior cingulate (Harrison et al., 2006, 2011), and the hippocampus
(Strange et al., 2005), even in the context of passive listening (Tobia
et al., 2012; Tremblay et al., 2012) or passive viewing (Nastase et al.,
2014). Behavioral work has shown that humans track parameters relat-
ed to entropy, such as token frequency (Shannon entropy; e.g., Berlyne,
1957; Vitz, 1966, 1964), transition constraints (Markov entropy;
e.g., Falk and Konold, 1997; Saffran et al., 1996) and chaotic patterns
underlying nonlinear systems (e.g., Smithson, 1997). Chater (1996)
and Chater and Vitanyi (2003) adopt a monotonic entropy–complexity
relation, suggesting that this sort of pattern sensitivity is grounded in a
basic cognitive principle: people search for the simplest (i.e., sparsest,
most compressed) representation of a given input. This approach
operationalizes sparseness or compressibility of a stimulus in terms of
Kolmogorov complexity (Kolmogorov, 1965), an information theoretic
construct reflecting the length of the shortest computer program that
can encode and reproduce the stimulus (e.g., Chater and Vitanyi,
2003). Falk and Konold (1997) provide convincing behavioral support
for this perspective in showing that series that are subjectively
perceived as more disordered take longer to memorize and are more
difficult to copy. Antrobus (1968) furthermore demonstrated that audi-
tory series of greater entropy are associated with fewer task-unrelated
thoughts.

While the above studies provide substantial evidence that the brain
is sensitive to input entropy, we hypothesized more specifically that
certain brain systemswould track entropy in a convexmanner, indicat-
ing sensitivity to complexity. Note that entropy captures only a partial
feature of a temporally unfolding environment, namely the uncertainty
in the signal generated by a system, rather than specifying the system
itself. Researchers in the field of complexity science have quantified
“complexity” in terms of the sophistication of a system's underlying
structural configuration, whereas entropy captures the randomness or
uncertainty associated with a system's output (e.g., Crutchfield, 2012).
This formulation of complexity has roots in early work by Huberman
and Hogg (1986), which framed complexity in terms of the diversity
of interactions amongelements of a systemacross all levels of a system's
structural hierarchy.More recent treatments of complexity have follow-
ed a similar trajectory: Bialek et al. (2001) emphasized the generaliz-
ability of the predictive information captured by models. Crutchfield's
structural complexity (Crutchfield, 2012; Feldman et al., 2008) reflects
themodel sophistication required to specify a system's underlying con-
figuration. Bayesianmodel selection accounts for complexity in terms of
model evidence or marginal likelihood (see Spiegelhalter et al., 2002).

The evidence for a generative model relies on a tradeoff between fit
and complexity, where complexity effectively measures the degrees of
freedom, in terms of model parameters, needed to provide an accurate
explanation of the data. In this sense, entropy represents the degrees
of freedom in the data, while complexity captures the degrees of
freedom used by the model to explain those data. This resonates with
current neurocomputational theories of free energy minimization,
where approximate Bayesian inference (e.g., via predictive coding)
serves to maximize model accuracy and minimize complexity (Clark,
2012; Friston, 2010). These theories are consistent with the hypothesis
that the brain encodes both accuracy and complexity.

Independent of the formal details, these latter approaches to
complexity converge on a central principle: systems generating either
highly structured or randomoutputs can often be specified in a relatively
concise way — that is, in terms of a model with fewer parameters or
succinct schema—while systems characterized bymore intricate under-
lying structural interactions tend toward producing outputs of interme-
diate entropy and require more sophisticated models. Consequently,
there is a convex relationship between entropy and complexity such
that complexity isminimal in systems generating outputswith extreme-
ly low or high entropy, but is maximal somewhere between these
extremes (Gell-Mann, 1995; Huberman and Hogg, 1986; Lopez-Ruiz
et al., 1995; Shiner et al., 1999).

The above discussion does not constitute theoretical hairsplitting, as
it offers a more detailed account of how the human brain may process
sensory inputs of varying disorder. For example, neural sensitivity to
varying complexity (a curvilinear response to entropy) may reflect the
brain's maintenance of a generative model useful for predicting incom-
ing sensory stimuli by inferring their underlying causes (e.g., Dayan
et al., 1995; Friston, 2010). This abstract model of the environment's
structural configuration provides a succinct template useful for general-
ization and for detecting changes between environmental states.2

Interestingly, behavioral work has shown that stimuli with intermedi-
ate levels of randomness are often considered attention-grabbing, or
judged as more interesting, aesthetically appealing or otherwise
“complicated” (Berlyne, 1971; Loewenstein, 1994; Vitz, 1966). Abdallah
and Plumbley (2009) formally demonstrated that series in which each
discrete stimulus reduces a relatively large amount of prior uncertainty
are characterized by intermediate levels of disorder; this provides a
computational explanation for why such stimuli are perceived as highly
engaging.

Given thismotivation,we hypothesized that the degree of functional
integration within specific networks of the human brain would vary
according to both the entropy of an ongoing sensory input as well as
the complexity of the system generating that input. To test this hypoth-
esis, we used functional MRI to model the whole-brain connectivity
networks of several seed regions while participants passively listened
to four 2.5 min auditory series. Each series was characterized by a
different level of entropy as determined by the transition constraints
between tones. We then used planned contrasts to probe for specific
entropy-dependent changes in the regression coefficients of the seed
time series.

2 To illustrate, a model that represents a system as “transitioning between four states
deterministically” is consistent with 24 possible instantiations of actual low-entropy out-
puts (e.g., ABCDABCD… or DBCADBCA…). Conversely, a random source that generates a
continuous series of four tokens can be represented as, “all state transitions are equally
likely.” These concise descriptions are insufficient for lossless compression or veridically
reproducing any specific stimulus generated by a system, but are indeed sufficient for de-
tecting a change from an ordered to a random environment. Most importantly, although
the systems generating these series vary greatly in the expected conditional entropy of
their output streams (2 bits in the random case, 0 in the deterministic case), both share
concise descriptions when specifying state transitions. In contrast, an output such as
ABCDAABCDABCD… has a conditional entropy somewhere between the random and de-
terministic cases above, but the system generating this series itself is more challenging
to specify, e.g., “generatesABCDconsecutivelywith the exception that Amay repeat itself,”
and therefore can be considered more complex than the random or deterministic case.
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