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Granger-causalitymetrics have become increasingly popular tools to identify directed interactions between brain
areas. However, it is known that additive noise can strongly affect Granger-causality metrics, which can lead to
spurious conclusions about neuronal interactions. To solve this problem, previous studies have proposed the
detection of Granger-causal directionality, i.e. the dominant Granger-causal flow, using either the slope of the co-
herency (Phase Slope Index; PSI), or by comparing Granger-causality values between original and time-reversed
signals (reversed Granger testing). We show that for ensembles of vector autoregressive (VAR) models
encompassing bidirectionally coupled sources, these alternative methods do not correctly measure Granger-
causal directionality for a substantial fraction of VARmodels, even in the absence of noise.We then demonstrate
that uncorrelated noise has fundamentally different effects on directed connectivity metrics than linearly mixed
noise,where the lattermay result as a consequence of electric volume conduction. Uncorrelatednoise onlyweak-
ly affects the detection of Granger-causal directionality, whereas linearly mixed noise causes a large fraction of
false positives for standard Granger-causality metrics and PSI, but not for reversed Granger testing. We further
show that we can reliably identify cases where linearly mixed noise causes a large fraction of false positives by
examining the magnitude of the instantaneous influence coefficient in a structural VAR model. By rejecting
cases with strong instantaneous influence, we obtain an improved detection of Granger-causal flow between
neuronal sources in the presence of additive noise. These techniques are applicable to real data, which we dem-
onstrate using actual area V1 and area V4 LFP data, recorded from the awakemonkey performing a visual atten-
tion task.

© 2014 Elsevier Inc. All rights reserved.

The Wiener–Granger definition of causality allows inference of
causal relationships between interacting stochastic sources. Causality
analysis methods have been applied in many fields, including physics,
econometrics, geology, ecology, genetics, physiology and neuroscience
(Barnett et al., 2009; Bernasconi and Konig, 1999; Bressler and Seth,
2011; Brovelli et al., 2004; Ding et al., 2006; Geweke, 1982; Granger,
1969; Gregoriou et al., 2009; Hiemstra and Jones, 1994; Hu and
Nenov, 2004; Kaufmann and Stern, 1997; Lozano et al., 2009;Marinazzo
et al., 2008; Nolte et al., 2008; Rosenblum and Pikovsky, 2001; Salazar
et al., 2012; Schreiber, 2000; Smirnov and Mokhov, 2009; Staniek and
Lehnertz, 2008; Sugihara et al., 2012). Standard Granger-causality
metrics are typically based on linear vector autoregressive (VAR)
modeling, with Granger-causality fi → j defined by examining xi's effect
on the residual errors in forecasting xj(t) (Geweke, 1982; Granger,

1969, Eqs. (4)–(5)). In the neurosciences, Granger-causality metrics
have become increasingly popular tools to identify functional,
frequency-specific directed influences between brain areas (e.g.
Bernasconi and Konig, 1999; Bressler and Seth, 2011; Brovelli et al.,
2004; Ding et al., 2006; Friston et al., 2014). Two recent studies have
shown interesting applications of Granger causality to characterize
functional interactions in the visual system. Bastos et al. (2014) and
van Kerkoerle et al. (2014) have shown that gamma frequencies
contribute to a feedforward flow of information, whereas alpha and
beta frequencies contribute to a flow of information in the feedback
direction. Interestingly, Bastos et al. (2014) succeeded to reconstruct
the visual hierarchy based on anatomical tracing studies on the mere
basis of examining the asymmetry of Granger-causality spectra, and
showed that this cortical hierarchy was task-dependent.

Granger-causality metrics were originally developed for systems
whose measurements are not corrupted by additive noise. It has been
shown that they can be strongly affected by both uncorrelated and
linearly mixed additive noise (Albo et al., 2004; Friston et al., 2014;
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Haufe et al., 2012, 2013; Nalatore et al., 2007; Newbold, 1978; Nolte
et al., 2008; Seth et al., 2013; Sommerlade et al., 2012). Nolte et al.
(2008) showed that adding a linearmixture of noise sources (correlated
noise) often leads to a misidentification of causal driver and recipient
when using the standard Granger-causality metrics proposed by
Granger (1969). This is an important issue in the neurosciences,
as electric currents spread instantaneously from single brain or
noise sources to multiple sensors (‘volume conduction’), posing a
major problem especially for scalp EEG (Electro-encephalography),
MEG (Magneto-encephalography), and intracranial LFP (Local Field
Potential) signals (Nolte et al., 2004; Nunez and Srinivasan, 2006;
Stam et al., 2007; Vinck et al., 2011). This problem can, as far as the
estimation of symmetric, undirected connectivity (like coherence,
phase locking value) metrics is concerned, be adequately addressed by
using metrics that are based on the imaginary component of the
cross-spectral density (Nolte et al., 2004; Stam et al., 2007; Vinck
et al., 2011). In this paper, we ask whether directed connectivity mea-
sures like Granger-causality can be protected against linearly mixed
noise as well.

Recently, two directed connectivity measures were introduced to
address the volume conduction problem. Nolte et al. (2008) pro-
posed to detect Granger-causal directionality by examining whether
fluctuations of one signal precede fluctuations of another signal in
time — i.e. temporal precedence — using a measure called phase
slope index (PSI). Haufe et al. (2012, 2013) proposed to protect
Granger-causality metrics against linearly mixed noise by comparing
Granger-causality values with those for time-reversed signals
(Haufe et al., 2013), henceforth referred to as RGT (reversed Granger
testing). In terms of the true positives vs false positives mix, PSI was
found to exhibit a slightly better performance than RGT and a much
better performance than standard Granger-causality metrics (Haufe
et al., 2012, 2013; Nolte et al., 2008).

While initial results using these alternative directed connectivity
metrics have been promising (Haufe et al., 2013; Nolte et al., 2008),
there are several critical questions that need to be addressed. Firstly, it
is unknown under which conditions PSI and RGT are in fact valid mea-
sures of Granger-causal directionality, as previous work evaluated
their use only for unidirectional, but not bidirectional VAR models
(Haufe et al., 2013;Nolte et al., 2008) (Case of no additive noise section).
This question is critical because interactions between cortical areas are
typically bidirectional rather than unidirectional. Secondly, it remains
unclear to what extent directed connectivity measures are affected by
uncorrelated noise, which occurs for example for spatially distant
spike trains, current source densities and bipolarly referenced LFPs
(Mitzdorf, 1985) (Case of uncorrelated noise section). Haufe et al.
(2013) and Nolte et al. (2008) only considered the effect of linearly
mixed noise (which is prominent for scalp EEGandMEG)but not uncor-
related noise. It is thus unknown whether standard Granger-causality
metrics can be safely used in the regime of uncorrelated noise. Thirdly,
it remains unclear whether PSI and RGT are indeed robust to linearly
mixed noise, and how their overall performances compare, since to
date they have been evaluated only for finite-length data traces and
unidirectional VAR models. This is problematic, because small fractions
of false positives may arise because of a lack of statistical power (finite
data traces) and the use of unidirectional VAR models. The perfor-
mances of PSI and RGT should therefore also be evaluated in the
asymptotic sampling regime (i.e., infinitely long data traces) and for
the bidirectional VAR models (Case of linearly mixed noise section).
Here,we employ algorithms to compute the various directed connectiv-
ity metrics analytically given the VAR models of signal and noise
sources. Surprisingly, we find that PSI, like standard Granger-causality
metrics, does not constrain the false positive rate at acceptable levels.
In contrast, RGT yields a much smaller fraction of false positives and
a much better overall performance than standard Granger and PSI,
although it still shows failures in a significant fraction of test cases.
This paper also aims to advance the theoretical analyses of PSI and

RGT; in particular, we use theoretical analysis to identify regimes in
which RGT always fails or succeeds.

We find that further performance gains are achievable beyond those
obtained by RGT, by indirectly measuring the amount of linearly mixed
noise impinging on twomeasurement sensors. The idea of this approach
is quite simple but effective:We can examine the degree to which there
is instantaneous (i.e., zero-lag) feedback between time series by using a
structural VAR model that contains an explicit instantaneous transfer
coefficient. This allows us to reject cases where the instantaneous
transfer is too large compared with the transfer at other lags. In the
Criterion on instantaneous influence section we show that failures of
Granger-causality metrics due to linearly mixed noise can be reliably
predicted and removed by examining the magnitude of the instanta-
neous prediction coefficient in a structural VAR model. This provides a
means to reduce the false positive rate and to improve the overall
performance of the analysis in terms of the true and false positive mix.

We apply these techniques to actual LFP data obtained from areas V1
and V4 in the awake monkey performing a visual attention task.

Introduction of Granger analysis techniques and VAR model with
additive noise

In this section, we define the basic VAR model, the VAR model with
additive noise included, the various directed connectivity metrics, and
performance measures for the different metrics.

The bivariate VAR model and a measure of linear Granger feedback

In this paper, we will be concerned with a bivariate signal x(t)
described by a bivariate VAR model of orderM

x tð Þ ¼
XM
τ¼1

A τð Þx t−τð Þ þ U tð Þ; ð1Þ

where innovation U(t) — the remaining error after incorporating the
predictions from past values of x(t) — has a covariance matrix

X
≡ Cov U tð Þ;U tð Þf g: ð2Þ

We refer to x1 and x2 as the signal sources. ThematricesA(τ) hold the
real-valued VAR coefficients. Also x(t) can be represented by the
restricted AR model

x tð Þ ¼
XM
τ¼1

F τð Þx t−τð Þ þ V tð Þ ð3Þ

with diagonal coefficient matrix F(τ) and Ω ≡ Cov{V(t), V(t)}. The
standard measure of Granger-causal flow is defined by the log-ratio of
the variances of the innovation errors (Granger, 1969)

f j→i ≡ ln
Ωii

Σii

� �
; i≠ j: ð4Þ

The feedback metric fj → i measures the degree to which past
values of xj(t) improve the prediction of future values of xi(t) relative
to what can be derived from past values of xi(t). We define x1 to be
Granger-causally dominant over x2 if the Granger-causal directionality
measure

g ≡ f 1→2− f 2→1N0: ð5Þ

In this paper, we study the simplified problem of detecting sgn(g),
where sgn(g) is the sign function, from noisy data, as in Nolte et al.
(2008); we are not concerned with the problem of estimating f2→ 1

and f1→ 2 separately. The problem is stated as providing a measure of
sgn(g) that optimizes performance in terms of the false and true
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