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According to electrophysiological studies motor imagery andmotor execution are associated with perturbations
of brain oscillations over spatially similar cortical areas. By contrast, neuroimaging and lesion studies suggest that
at least partially distinct cortical networks are involved in motor imagery and execution. We sought to further
disentangle this relationship by studying the role of brain-robot interfaces in the context of motor imagery and
motor execution networks.
Twenty right-handed subjects performed several behavioral tasks as indicators for imagery and execution of
movements of the left hand, i.e. kinesthetic imagery, visual imagery, visuomotor integration and tonic contrac-
tion. In addition, subjects performed motor imagery supported by haptic/proprioceptive feedback from a
brain–robot-interface. Principal component analysis was applied to assess the relationship of these indicators.
The respective cortical resting state networks in the α-range were investigated by electroencephalography
using the phase slope index.
We detected two distinct abilities and cortical networks underlying motor control: a motor imagery network
connecting the left parietal and motor areas with the right prefrontal cortex and a motor execution network
characterized by transmission from the left to right motor areas. We found that a brain–robot-interface might
offer a way to bridge the gap between these networks, opening thereby a backdoor to the motor execution
system. This knowledge might promote patient screening and may lead to novel treatment strategies, e.g. for
the rehabilitation of hemiparesis after stroke.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Following a stroke, the ability ofmotor execution andmotor imagery
can be preserved or impaired independently of each other (de Vries
et al., 2011; Wiese et al., 2005). Motor imagery can be understood as
the planning of a movement, with its overt execution being inhibited.
However, both tasks result in very similar power perturbations of oscil-
lations in the α-range (8–14 Hz) and β-range (15–30 Hz) in identical
brain areas (Decety, 1996; Ehrsson et al., 2003; Gao et al., 2011;
Jeannerod, 1995; Kaiser et al., 2011; Miller et al., 2010). On the basis
of these findings, Sharma (2006) has suggested that motor imagery
training may serve as a backdoor to the rehabilitation of motor control,
which is becoming increasingly important in the rehabilitation of severe
upper limb hemiparesis following stroke (Ietswaart et al., 2011;

Langhorne et al., 2009). Brain–computer interfaces controlled by
event-related power perturbations have been used to support motor
imagery training with visual or auditory feedback (Ang et al., 2011;
Kaiser et al., 2011). The combination of motor imagery and feedback
with robotic rehabilitation (Hogan and Krebs, 2011; Lo et al., 2010),
i.e. employing a brain–robot-interface with haptic feedback (BRI),
is the most recent development in this field and has already been
shown to be feasible and effective (Gomez-Rodriguez et al., 2011;
Ramos-Murguialday et al., 2013). There is, however, still large heteroge-
neity in healthy subjects and stroke survivors as regard to their ability to
control EEG power in the α- or β-range during a motor imagery task
(Buch et al., 2012; de Vries et al., 2011; Vidaurre and Blankertz, 2010).
Furthermore, from a network perspective, different networks have
been implicated in motor imagery versus motor execution, casting
some doubt on the idea of usingmotor imagery effectively formotor re-
habilitation. To be specific, planning ofmanual actions of either hand in-
volves the left posterior parietal and left motor areas (Creem-Regehr,
2009; Haller et al., 2009; Johnson-Frey et al., 2004; Lewis, 2006;
Rushworth et al., 2003), whereas execution of hand movements en-
gages a bilateral network between themotor areas of both hemispheres
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(Grefkes et al., 2008; Shibasaki, 2012), with the final descending
pathway originating from the contralateral primary motor cortex
(Chouinard and Paus, 2006).

Motivated by the need for economic screening tools, and in a bid to
gain more knowledge about the plausibility of motor imagery training
in a BRI environment as a backdoor to the motor system, we focused
on two researchquestions. First, we aimed to determine how the abilities
for motor imagery andmotor execution are connected and how they in-
teract with the ability to control a BRI. Second, we wished to ascertain
which cortical networks during resting state would be able to predict
the abilities of motor imagery andmotor executionwith high specificity.
We therefore developed a battery of behavioral indicators for the two
latent abilities and studied their relationship to resting state networks.

Latent abilities

In many movements, planning, preparation, execution and control
go hand in hand, albeit at different degrees. Performance in a motor
task recruits several distinct latent abilities. This interplay of latent
abilities cannot be measured directly. The use of principal component
analysis (PCA) of behavioral indicators, which does not rely on a priori
structural assumptions, is a common approach in such cases to unravel
this relationship. In PCA,matrix rotation transforms behavioral data into
orthogonal, i.e. de-correlated main components. Our hypothesis was
that we would detect two main components, one related to motor
imagery and the other to motor execution. To validate whether these
two components could be understood as orthogonal, we performed
several statistical analysis methods, e.g. Horn's parallel analysis and
the opaque factor analysis using promax rotation.

Additionally, we expected that BRI would share loadings with both
components, indicating that it could bridge motor imagery and execu-
tion. In addition to the performance in the brain–robot interface (BRI)
task, we therefore applied two behavioral measures to cover imagery
and execution of movements. We used the Kinesthetic and Visual
Imagery Questionnaire (KVIQ) as an indicator for motor imagery
(Malouin et al., 2007), since it uses small movements of individual
limbs. Two motor tasks were used as an indicator for motor execution.
One was based on fine, visually guided movements, while the other
used a task based on control of electromyographic activity.

Network analysis

The power in theα-range (8–14Hz) over sensorimotor areas during
resting state has been proposed as a predictor for the ability to control a
brain–robot interface (Blankertz et al., 2010). We recently showed that
lateralization of centro-parietal connectivity in the α-range (Vukelić
et al., 2014) increases during a brain–robot-interface task. Several mea-
sures of connectivity in resting state have been proposed to predict
motor learning (Albert et al., 2009; Wu et al., 2014), task performance
(Lee et al., 2011; Zhou et al., 2012) or personality traits (Langer et al.,
2012; Putman, 2011). We used the phase slope index (PSI), because
PSI is very robust against noise (Nolte et al., 2010) and because it
requires no prior assumptions about the structure of interaction. PSI
indicates the temporal coupling of two signals and the direction of this
information flow. Transmission is characterized by a systematic time
lag of the two signals, which can be estimated by measuring the
increase of a phase-lag over increasing frequencies, and which finally
results in a positive phase slope. The sign of the PSI is therefore an
indicator of the direction of signal transmission.

Methods

Subjects

We recruited 23 right-handed healthy subjects with a score equal to
or above 75 in the Edinburgh Handedness Inventory. The participants

had no habitual drug or alcohol consumption, cognitive or psychiatric
impairments, neurological disorders, metal implants or pregnancy.
Three subjects were excluded because they did not complete the proto-
col or because no artifact-free EEG signal could be obtained, resulting in
a total of 20 right-handed subjects in the analysis (mean age = 28.5
years, SD = 10.5, range 20–58, 11 female). Subjects were not compen-
sated for their participation and gave their written, informed consent
beforehand. The study protocol was approved by the local ethics
committee.

EEG & EMG recording

In all experiments, EEGwas recorded from31 Channels (FP1, FP2, F3,
FZ, F4, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, C5, C3, C1, CZ, C2, C4, C6, CP5,
CP3, CP1, CPZ, CP2, CP4, CP6, P3, PZ, P4, O1, O2) grounded to AFz and
referenced to the rightmastoid (TP10). Electromyographic (EMG) activ-
ity was recorded from the abductor pollicis brevis and first dorsal
interosseus muscles of the left hand in a muscle–tendon montage, and
from the flexor digitorum superficialis and extensor digitorum
communis muscles of the left forearm in a bipolar montage. All mea-
surementswere performed at a sampling rate of 1000Hz andDC correc-
tion with a time-constant of 10 s, using Brain Products Amplifiers and
transmitted online to BCI2000 (Schalk et al., 2004) for storage and/or
online processing. Data analysis was performed offline with custom
written or adapted scripts in MatLab.

Control of a brain robotic interface

The ability to control a BRI was assessed in a task based on closed-
loop haptic feedback of kinesthetic imagery of opening the left hand.
The task consisted of three runs of 5 min each in length. Each run was
separated into 20 trials (60 trials in total). Every trial consisted of
three phases (2 s preparation, 6 s kinesthetic motor imagery of opening
the left hand, 6 s relaxation) and the onset of each phase was indicated
by an auditory cue. Every 40 ms, frequency power in the β-range
(16–22 Hz) over sensorimotor areas contralateral to the left hand
(FC4, C4, and CP4) was estimated online for a window of 500 ms
using an autoregressive model based on the Burg Algorithm with a
model order of 32. Our linear classifier detected a decrease in β-power
relative to the power during the last 15 s of the other phases (rest &
preparation). Desynchronization in the motor imagery phase resulted
in the fingers of the left hand being extended by the hand robot
(Amadeo, Tyromotion, Austria). When the classifier detected a discon-
tinuation of desynchronization, the finger extension ceased. After the
motor imagery phase, the hand was returned to the starting position
independently of the subject's brain state. The subjects were instructed
to perform kinesthetic motor imagery of hand opening during the
motor imagery phase, and to rest during the other phases.We calculated
the average of true positive rate and true negative rate (i.e. classification
accuracy) as an indicator of motor imagery-based neurofeedback
performance (BRI).

Assessment of kinesthetic and visual imagery

Different questionnaires for the assessment of motor imagery vivid-
ness, such as the Vividness of Movement Imagery Questionnaire
(VMIQ) (Isaac et al., 1986) or the Kinesthetic and Visual Imagery
Questionnaire (KVIQ) are available. While VMIQ is based on whole-
body movements, KVIQ uses smaller movements of individual limbs,
which is more akin to the other behavioral indicators we employed.
We used the KVIQ to assess the ability to imagine movements, which
was translated in-house into German. The KVIQ consists of 18 concepts
of axial, upper and lower limbmovements. We assessed the 9 axial and
upper limb items, adhering to the described protocol (Malouin et al.,
2007) that any movement is first presented to the subject by the inter-
viewer before being executed by the subject and then imagined.
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