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Neuralmassmodels (NMMs) applied to neuroimagingdata often do not emphasise intrinsic self-feedbackwithin
a neural population. However, based on mean-field theory, any population of coupled neurons is intrinsically
endowed with effective self-coupling. In this work, we examine the effectiveness of three cortical NMMs with
different self-feedbacks using a dynamic causal modelling approach. Specifically, we compare the classic Jansen
and Rit (1995) model (no self-feedback), a modified model by Moran et al. (2007) (only inhibitory self-
feedback), and our proposed model with inhibitory and excitatory self-feedbacks. Using bifurcation analysis,
we show that single-unit Jansen–Rit model is less robust in generating oscillatory behaviour than the other
two models. Next, under Bayesian inversion, we simulate single-channel event-related potentials (ERPs) within
a mismatch negativity auditory oddball paradigm.We found fully self-feedbackmodel (FSM) to provide the best
fit to single-channel data. By analysing the posterior covariances of model parameters, we show that self-
feedback connections are less sensitive to the generated evoked responses than the other model parameters,
and hence can be treated analogously to “higher-order” parameter corrections of the original Jansen–Rit
model. This is further supported in the more realistic multi-area case where FSM can replicate data better than
JRM and MoM in the majority of subjects by capturing the finer features of the ERP data more accurately. Our
work informs how NMMs with full self-feedback connectivity are not only more consistent with the underlying
neurophysiology, but can also account for more complex features in ERP data.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Mesoscale neurocomputational models can account for the
dynamics of brain activities by using mean-field approaches to reduce,
simulate and analyse models of neuronal populations (or ‘lumped’)
contingent on the level of realism sought (Amit and Brunel, 1997;
Deco et al., 2008; Grimbert, 2008; Moran et al., 2013; Wilson and
Cowan, 1973;Wong andWang, 2006). One suchmodel type, the neural
mass models (NMMs), can account for the collective behaviour of
neuronal and synaptic activities (Beurle, 1956). Such models can
mimic experimental results from data with sources as diverse as local
field potentials, magneto/electroencephalography (M/EEG), and func-
tional magnetic resonance imaging (fMRI) (Friston and Dolan, 2010;
Moran et al., 2013). NMMs also have the added advantages of
being computationally efficient (as compared e.g. to spiking neuronal
network models), capacity to incorporate sufficiently biologically
realistic features (e.g. intrinsic neuronal/synaptic timescales and mech-
anisms), and allow mathematical tractability (i.e. rigour theoretical
analysis of themodel's behaviour) (David et al., 2007; Deco et al., 2008).

NMMwas first used byWilson and Cowan (1972, 1973) to describe
the temporal evolution of subpopulations in excitatory and inhibitory
cells in a simplified “cortical microcircuit column” of Mountcastle
(1957). Subsequently, many other NMMs have been proposed to
account for various neuroimaging data, especially EEG activities
(David et al., 2005; Freeman, 1987; Jansen and Rit, 1995; Nunez,
1974; Da Silva et al., 1974; Valdes-Sosa et al., 2009; van Rotterdam
et al., 1982; Wendling et al., 2000, 2005; Zetterberg et al., 1978). A
particular seminal work by Jansen and Rit (1995) described an NMM
that consists of three neuronal subpopulations of excitatory (e.g. spiny
stellate and excitatory deep pyramidal), and inhibitory interneuron
cells (e.g. basket cells). A simplified representation of the model is
shown in Fig. 1a. Subsequent work by David and Friston (2003) used
this Jansen–Ritmodel (JRM) to study the effects of connectivity strength
and propagation of synaptic delays on EEG rhythms using two coupled
neural populations. They reproduced the power spectra of EEG signals
by fitting the model parameters. Moreover, they extended the JRM
into a larger range of interconnected cortical sources, allowing the
study of brain-wide interactions and is now used in the popular
hypothesis-driven framework dynamic causal modelling (DCM) for
event-related potentials (ERPs) (David et al., 2005; Friston et al.,
2003). Moran et al. (2007) augmented the model's formulation by
including two additional effects: spike-frequency adaptation (Benda
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and Herz, 2003) and backpropagation intrinsic inhibitory connections
(Waters et al., 2005) to model steady-state responses (Moran et al.,
2009). Those effects play a key role in slow- and high-frequency
oscillations, respectively (Buzsáki and Wang, 2012; Moran et al.,
2007). The architecture of the Moran et al. model (MoM), as shown in
Fig. 1b, has an added self-inhibitory feedback connection to the inhibito-
ry neural population (‘i’) and an embedded delay to the excitatory spiny
neural population (‘e1’). The rationale inMoM is that the spectral profile
can better represent the behaviour of time series of longer time
recordings (e.g., local field potentials, or spontaneous EEGs).

Most NMMs from the literature have involved a simplified neural
circuit architecture (David and Friston, 2003; David et al., 2005,
2006a; Jansen and Rit, 1995; Moran et al., 2013). However, the local
cortical neuronal circuits based on neuroanatomical findings are more
complex (Bastos et al., 2012; Douglas and Martin, 2004, 2010;
Mountcastle, 1957; Reimann et al., 2013; Thomson and Bannister,
2003). Moreover, some important connectivities have been ignored in
many NMMs. These include the local reciprocal interactions in a variety
of neuronal types or feedback influence of action potentials on dendritic
membrane potentials (Haeusler and Maass, 2007; Vetter et al., 2001;
Waters et al., 2005). In particular, based on mean-field theory, any
population of coupled neurons is intrinsically endowed with effective
self-coupling, and these intra-population self-feedbacks can be crucial
for generating certain brain activities (Wilson and Cowan, 1973;
Wilson and Cowan, 1972). Functionally, they can act as a self-
controlling mechanism among inhibitory cells that are important for
generating gamma rhythm EEG activities (40–70 Hz) (Buzsáki and
Wang, 2012; Vida et al., 2006) or self-excitation among excitatory neu-
rons for learning, memory, decision-making and other related cognitive
processes (Deco et al., 2008; Douglas et al., 1995; Durstewitz et al.,
2000; Hopfield, 1982, 1984; Wong and Wang, 2006).

Inmismatch negativity auditory oddball (MMN-AOD) paradigm, the
occasional deviant (“oddball”) stimuli violate the expectations due to
regular (“standard”) stimuli and is indicated by an increased response
in ERP components (Alho, 1995; Garrido et al., 2009) and gamma
band activities (Todorovic et al., 2011). They mostly appear in the
vicinity of fronto-central and temporal (auditory cortex) brain areas
between 100 and 250 ms post-stimulus (Giard et al., 1990; Näätänen
et al., 2007). In terms of the generation of mismatch responses, it has
been hypothesised that the inability of higher cortical areas to predict

sensory information, resulting in a prediction error, can lead to en-
hanced activities relative to predictable responses (Garrido et al.,
2007a; Lieder et al., 2013; Summerfield et al., 2008; Wacongne et al.,
2012). Moreover, they can be caused by involuntary (top–down)
attention and automatic reactions to change in stimuli (Escera and
Corral, 2008; Prinzmetal et al., 2010). Such behaviours can be
interpreted as interneuronal feedback effects (Bastos et al., 2012).

In the present work, we seek to further understand the computa-
tional roles of similar interneuronal feedback in MMN-AOD using ERP
data. Specifically, we introduce an extension of previous NMMs (David
and Friston, 2003; David et al., 2005, 2006a; Jansen and Rit, 1995;
Moran et al., 2007) that comprises self-feedback connections within
each of the three (‘e1’, ‘e2’, and ‘i’) neural subpopulations in line with
the known biology (Haeusler and Maass, 2007). Hereafter, we name it
as the fully self-feedback model (FSM) (Fig. 1c). This model will be
compared to the classic JRM and the modified version (without spike-
frequency adaptation) of the MoM. For simplicity, we shall henceforth
study and term this modified model MoM. Initially, we make use of
bifurcation analysis (i.e., sudden changes in dynamic behaviour) to
examine the oscillatory behaviours of the three models. Next, under a
forward modelling approach, we simulate the ERPs obtained from five
subjects. The Bayesian inversion is employed to optimise the free
parameters and fit the outputs to the observed data. To further under-
stand the underlying neural dynamics of MMN process, an inference is
made on the intrinsic parameters. A goodness-of-fit assessment, based
on free energy (or log-model evidence) criterion is employed to address
the face validity of the models (Penny, 2012). Finally, we extend
our simulations to the multi-area modelling by coupling multiple
single-area models. Using five interconnected units and under a
forward–backward functional hypothesis, we compare the outcome
from 3 NMMs. The results and implications are further discussed in
the sections below.

Materials and methods

Generative models

The basic structure of our proposed single cortical source is present-
ed in Fig. 2. Compared with the JRM, our FSM has three extra self-
feedback connections, each assigned to 3 subpopulations consisting of

Fig. 1. The schematic representation of threeNMMs of a cortical unitwith two excitatory (‘e1’ and ‘e2’) and one inhibitory (‘i’) subpopulations. a). NMMdescribed by Jansen and Rit (1995).
The coupling parameters are specified by ci, i= 1,…, 4. b). NMM described byMoran et al. (2007). The model has an extra inhibitory self-feedback connection (c5) within the inhibitory
neural population (‘i’). Note thatwe have ignored thepropagation delay from ‘e2’ to ‘e1’neurons. c). The fully self-feedbackmodel (FSM)has three self-feedback connections (c5, c6, c7). The
exogenous input and endogenous output: u(t) and y(t).
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