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15At rest, the brain's sensorimotor and higher cognitive systems engage in organized patterns of correlated activity
16forming resting-state networks. An important empirical question is how functional connectivity and structural
17connectivitywithin and between resting-state networks changewith age. In this studywe use networkmodeling
18techniques to identify significant changes in network organization across the human lifespan. The results of this
19study demonstrate that whole-brain functional and structural connectivity both exhibit reorganization with age.
20On average, functional connections within resting-state networks weaken in magnitude while connections
21between resting-state networks tend to increase. These changes can be localized to a small subset of functional
22connections that exhibit systematic changes across the lifespan. Collectively, changes in functional connectivity
23are also manifest at a system-wide level, as components of the control, default mode, saliency/ventral attention,
24dorsal attention, and visual networks become less functionally cohesive, as evidenced by decreased component
25modularity. Paralleling this functional reorganization is a decrease in the density and weight of anatomical
26white-matter connections. Hub regions are particularly affected by these changes, and the capacity of those
27regions to communicate with other regions exhibits a lifelong pattern of decline. Finally, the relationship
28between functional connectivity and structural connectivity also appears to change with age; functional
29connectivity along multi-step structural paths tends to be stronger in older subjects than in younger subjects.
30Overall, our analysis points to age-related changes in inter-regional communication unfolding within and
31between resting-state networks.

32 © 2014 Published by Elsevier Inc.
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37 Introduction

38 The brain is a complex system that can be conceptualized as a
39 network of anatomically linked regions and thereby made amenable
40 to analysis using tools from graph theory (Bullmore and Sporns, 2009;
41 Rubinov and Sporns, 2010; Sporns, 2014). The brain's structural connec-
42 tivity (SC), together with other factors, contributes to shape neurophys-
43 iological activity, and thereby influences functional connectivity (FC)
44 among neuronal populations (Wang et al., 2013) and brain regions
45 (Q3 Deco et al., 2010; Honey et al., 2009). Whereas SC refers to physical
46 connections between two brain regions, FC is defined as the statistical
47 dependency – e.g. correlation, coherence, mutual information, etc. –
48 between those regions' activity time courses. Graph theoretical analyses
49 of SC/FC networks have revealed a host of non-random attributes,
50 including small-worldness (Achard and Bullmore, 2006; Gong et al.,
51 2009), hubs and cores (Achard et al., 2006; Hagmann et al., 2008; Zuo
52 et al., 2012), a structural rich club (van den Heuvel and Sporns, 2011),
53 modular architecture (Meunier et al., 2009, 2010), and economicwiring
54 (Bassett et al., 2010; Bullmore and Sporns, 2012), among others.

55Resting brain FC can be decomposed into resting-state networks
56(RSNs) composed of brain regions that exhibit coherent activity in a
57task-free state (Buckner et al., 2013), exhibit consistent spatial
58topographic patterns across the cerebral cortex (Power et al., 2011;
59Yeo et al., 2011), and strongly resemble collections of brain regions cor-
60responding to task-evoked sensory, motor and higher-order cognitive
61systems (Crossley et al., 2013; Smith et al., 2009). RSNs can be extracted
62using differentmethodologies, including independent component anal-
63ysis (ICA; Beckmann et al., 2005) and clustering approaches applied to
64whole-brain FC networks (e.g., Bellec et al., 2010; Power et al., 2011;
65Yeo et al., 2011). A number of recent studies have focused on changes
66in connectivity within and between RSNs, both on fast time scales in
67the course of spontaneous brain dynamics (Allen et al., 2014; see
68Hutchinson et al., 2013 for a systematic review), as well as in the course
69of visual perceptual learning (Lewis et al., 2009) Q4, acquisition of motor
70skills (Ma et al., 2011) and cognitive practice (Jolles et al., 2013).
71This report aims to characterize changes in the pattern of SC/FC over
72the course of the human lifespan, with a focus on connectivity changes
73within and between RSNs. A number of previous studies have shown
74that patterns of SC/FC undergo characteristic changes over developmen-
75tal stages and aging (Cao et al., 2014; Wang et al., 2012; Yang et al.,
762014; Zuo et al., 2010). In childhood, FC is dominated by short-range
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77 local links, which are gradually replaced by long-distance functional
78 connections in adulthood, forming mature RSNs (Fair et al., 2009;
79 Kelly et al., 2009;Q5 Power et al., 2011; Supekar et al., 2010). In contrast,
80 aging studies have demonstrated the opposite effect, with RSNs
81 exhibiting decreased FC (Andrews-Hanna et al., 2007; Ferreira and
82 Busatto, 2013; Geerlings et al., 2014). Studies of SC across the lifespan
83 have demonstrated that hub regions and modules are present by early
84 childhood, though changes of cortical white-matter connectivity
85 continues across the lifespan (Gong et al., 2009;Q6 Hagmann et al., 2008;
86 Lim et al., 2013).
87 While these studies and others have provided insight into the
88 development and maturation of specific RSNs (e.g. Fair et al. (2007,
89 2008, 2009) for control networks and Andrews-Hanna et al. (2007)
90 for the default mode and dorsal attention networks), few reports have
91 examined age-related changes in connectivity at the whole-brain level
92 across the entire lifespan. Moreover, studies that focus on the intrinsic
93 connectivity of a specific RSN necessarily overlook any connections
94 that that RSN makes to the rest of the brain and how these connections
95 change as a function of age. Here, we aim to bridge this particular gap in
96 knowledge by tracking the age-related change in all functional and
97 structural connections in the human brain over the course of the
98 lifespan. Because RSNs are thought to correspond to the brain's
99 functional systems, it was of particular interest to observe how these
100 changes were related to the boundaries of RSNs and their distributed
101 subcomponents. An additional aimwas to gain insight into how changes
102 in SC and FCmight be interrelated, andwhat these changesmight reveal
103 about age-related changes in interregional communication.

104 Methods and materials

105 NKI-RS lifespan sample and image preprocessing

106 Lifespan data used in this study are part of the publicly availableNKI-
107 Rockland Sample (http://fcon_1000.projects.nitrc.org/indi/pro/nki.
108 html) from the Nathan Kline Institute (NKI, NY, USA) consisting of
109 N = 126 subjects (58 female) over the age range 7–85 years (median
110 age = 31.5). The study was approved by the NKI institutional review
111 board and all adult and child subjects provided informed consent
112 (Nooner et al., 2012).
113 Subjects in this study underwent a scan session using a Siemens
114 TrioTM 3.0 T MRI scanner. Resting fMRI scans were collected using an
115 echo-planar imaging (EPI) sequence with the following parameters:
116 time repetition (TR) / time echo (TE) = 2500 / 30 ms, flip angle
117 (FA) = 80°, field of view (FOV) = 216 × 216 mm2, voxel size = 3.0 ×
118 3.0 × 3.0 mm2, distance factor = 10%, number of slices = 38. Each
119 scan session was 650 s long and comprised 260 functional volumes. In-
120 side the scanner, subjects received instructions to keep their eyes
121 closed, relax their minds, and to not move. T1-weighted images were
122 acquired using the following magnetization-prepared rapid gradient
123 echo (MPRAGE) sequence: TR / TE = 2500 / 30 ms, inversion time =
124 1200 ms, FA = 8°, FOV = 256 × 256 mm2, voxel size = 1.0 × 1.0 ×
125 1.0 mm3, number of slices = 192. T1-weighted images were
126 subsequently used for spatial normalization and group-specific
127 template generation.
128 This sample has been used in two recent studies on the human brain
129 functional connectivity changes across the lifespan (Cao et al., 2014;
130 Yang et al., 2014). The Connectome Computation System (CCS: http://
131 lfcd.psych.ac.cn/ccs.html) was used to preprocess both R-fMRI and DTI
132 images for subsequent analyses. As in Cao et al. (2014), preprocessing
133 of functional images included discarding the first four EPI volumes to
134 allow for the signal to reach equilibrium, correction for timing offsets,
135 3D geometrical displacement correction for headmotion, and 4D global
136 mean-based intensity correction. Motion correction was performed
137 using the Friston-24 model, which regresses out nuisance parameters
138 including six head motion parameters, those same parameters at the
139 previous time step, and both sets of parameters squared (Friston et al.,

1401996). Additionally, global mean, white matter, and cerebrospinal
141fluid signals were also included as nuisance parameters and regressed
142out. Lastly, the signal was band-pass filtered (0.01–0.1 Hz) and both
143linear and quadratic trends removed.
144The preprocessing steps of DTI images are identical to those used in
145an earlier study (van den Heuvel and Sporns, 2011). Specifically, DTI
146images were corrected for eddy-current distortions and realigned to
147the mean image of the 12 unweighted B0 images (Andersson and
148Skare, 2002). Using the corrected DTI data, a tensor was fit to the diffu-
149sion profile within each voxel and the diffusion direction within each
150voxelwas assigned as theprincipal eigenvector of the tensor by comput-
151ing its eigen-system (Chang et al., 2005). To provide information on the
152diffusion direction within a given voxel, its fractional anisotropy (FA)
153was computed as the square root of the sum of squares (SRSS) of the
154diffusivity differences, divided by the SRSS of the diffusivities. Using
155the information on preferred diffusion direction with each voxel in the
156whole brain mask, the white matter tracts were reconstructed with
157FACT (fiber assignment by continuous tracking) algorithm (Mori and
158van Zilj, 2002; Mori et al., 1999). Specifically, within each voxel, evenly
159distributed 32 seedswere used as starting points of possible streamlines,
160which generate thewhitematter fibers by following the preferred diffu-
161sion direction from voxel to voxel. A threshold on FA of 0.1 or a sharp
162turn of N45° was set to stop tracking a fiber streamline at a voxel.

163Construction of FC networks

164In order to address questions related to RSNs, we used a previously
165established functional parcellation of the human cerebral cortex (Yeo
166et al., 2011). This particular parcellation was derived by clustering the
167whole-brain functional connectivity networks of 500 subjects (along
168with a 500 subject replication cohort) according to the similarity of
169regions' functional connectivity profiles. This procedure resulted in
170seven clusters, whose boundaries shared a close correspondence to
171the known topographic boundaries of visual (Vis) and somatomotor
172(SomMot) networks, limbic regions (Limbic) and distributed associa-
173tion networks for executive control (Cont), attention (DorsAttn,
174SalVentAttn), and internally-directed cognition (Default). These seven
175RSNs displayed hierarchical organization such that each of the seven
176clusters could be subdivided into components with distinct patterns of
177FC, resulting in a total of 17 RSN components or sub-networks: VisCent,
178VisPeri, SomMotA, SomMotB, LimbicA, LimbicB, ContA, ContB, ContC,
179DorsAttnA, DorsAttnB, SalVentAttnA, SalVentAttnB, DefaultA, DefaultB,
180DefaultC, and DefaultD. Across all the 17 sub-networks, there are in
181total n = 114 separated anatomical regions of interest (ROIs). Specifi-
182cally, any of the ROIs meets two basic requirements: 1) it is isolated
183anatomically from other regions within the sub-network it belongs to,
184and 2) is separated by the network boundaries from regions within
185other sub-networks. These ROIs were then used to represent nodes in
186both FC and SC networks. The functional connection between nodes i
187and j was defined as the Fisher-z transformed Pearson product–
188moment correlation of the representative BOLD time series recorded
189at those nodes. In the standard surface space defined by FreeSurfer
190(i.e., fsaverage5), representative time series were computed as the aver-
191age time series of all voxels within an ROI extracted from the trans-
192formed individual preprocessed R-fMRI data on the fsaverage5
193surfaces (Jiang et al., 2014). For each subject, FC between all pairs was
194organized into an n × weighted and signed correlation matrix, AFC,
195whose elements aij

FC denoted the FC between nodes i and j. It is common
196practice to sparsify AFC by retaining only a fraction of the strongest con-
197nections or entries that survive a threshold for statistical significance
198(Achard and Bullmore, 2006; Cao et al., 2014). In this study FC networks
199were not sparsified. Eliminating connections impairs our ability to
200assess how FC changes with age — removing a connection from some
201subjects but not from others results in fewer observations and a reduc-
202tion in statistical power. A group-averaged FC matrix (for visualization
203only) representing all subjects is shown in Fig. 2A. (See Fig. 1.) Q7

2 R.F. Betzel et al. / NeuroImage xxx (2014) xxx–xxx

Please cite this article as: Betzel, R.F., et al., Changes in structural and functional connectivity among resting-state networks across the human
lifespan, NeuroImage (2014), http://dx.doi.org/10.1016/j.neuroimage.2014.07.067

http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
http://lfcd.psych.ac.cn/ccs.html
http://lfcd.psych.ac.cn/ccs.html
http://dx.doi.org/10.1016/j.neuroimage.2014.07.067


Download English Version:

https://daneshyari.com/en/article/6025976

Download Persian Version:

https://daneshyari.com/article/6025976

Daneshyari.com

https://daneshyari.com/en/article/6025976
https://daneshyari.com/article/6025976
https://daneshyari.com

